• Title/Summary/Keyword: Sericite

Search Result 163, Processing Time 0.021 seconds

Genetic Consideration of Sericite Deposits Derived from Granitic Rocks in the Taebaegsan Region (태백산지역에 분포하는 화강암체 기원 견운모광상의 성인적 고찰)

  • Yoo, Jang-Han;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2008
  • Yeongweol sericite deposit of Gangwon Province is regarded as one of the sericite deposits derived from granitic rocks due to post-magmatic alkali metasomatism, and the other sericite deposit of the same origin is the Daehyun mine of Gyungbug Province. Sericite ores were originated from leucocratic granitic stocks of Cambrian-Triassic age which intruded the pegmatitic migmatite of the unknown age and granite of the Pre-cambrian age, respectivcly. Jangsan quartzite of the lowermost formations of the Paleozoic era, which played as the capping rock protected from the leakage of the hydrothermal solution. It is well known that those sericite deposits arc formed during formation of the geosyncline, and they are also situated in the margins of the Hambaeg Syncline. Leucocratic granites commonly contain pegmatites with tourmaline crystals, and are rich in potassium feldspars, and sodium plagioclase as well. Sericitized ores are mainly found as we go up to the higher elevations or to the margins of the stocks. And some of the Highest grade sericite ores show the monominerallic character composed of nearly pure sericite probably doc to the ultra greisenization. Chemical analysis shows higher $Na_{2}O$ and $K_{2}O$ contents $(2.00\sim7.03wt%)$ as the sericitizations arc preceded and they represent obvious greisenization. But low CaO contents $(0.05\sim4.51wt%)$ indicate that albitizations are so weak. Pyrophyllite of the Youngweol area is often accompanied by the sericite, indicating rather stronger thermal effect than the Daehyun mine. It is known that there are several Sn deposits originated from greisenization in the Taebaegsan region. And greisens are inclined to contain W, Mo and several REE's such as Be, Nb and Li, and so Taebaegsan region interbedded with lots of carbonate formations are still worthwhile to survey for those metallic deposits.

Occurrence and Mineralogy of Sericite Deposit in the Hongjesa Granite from the Bonghwa Area in Kyungsangbuk-do, Korea (경북 봉화지역 홍제사 화강암 내에 배태하는 견운모광상의 산상 및 구성광물)

  • Oh, Ji-Ho;Hwang, Jin-Yeon;Koh, Sang-Mo;Kwack, Kyu-Won;Lee, Hyo-Min;Chi, Se-Jung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.67-83
    • /
    • 2008
  • The sericite ore deposits formed in the Precambrian granitic rock at the Bonghwa area, Kyungsangbuk-do, South Korea. The geochemical and mineralogical characteristics of sericite occurred in Daehyun and Seonghwang mine were analyzed using petrographic microscope, XRD, EPMA, XRF and ICP. An alteration mechanism was also studied. Sericitization occurred within the granitic rock by hydrothermal alteration. From the careful study on the occurrence and mineral assemblage, four alteration zone were clearly identified. These zones reflect progressive hydrothermal alteration process. All sericites belong to $2M_1$ polytype and their mineralogical and geochemical properties are close to illite. The sericite ores show various colors, but the characteristics of major element compositions and crystal structures are not different. The trace element analysis, however, indicates that the difference in color attribute to the abundance of Cr and Ti: bluish green colored sericite are enriched in Cr and blackish green colored sericite enriched in Ti. The formation of sericite ore deposit in the granitic rocks are closely relate to fracture system such as fault and joint. It is considered that the sericite ore deposits in this area were formed by very simple hydrothermal alteration occurred along the fracture zones in granitic rocks with absence of other hydrothermally altered minerals such as kaolin and pyrophyllite.

Investigation on Fire Resistance of Mortar Made of Powder Type Sericite (분말형 견운모를 혼입한 모르타르의 내화성능 연구)

  • Park, Ji-Yeon;Kim, So-I;Kim, Seong-Ha;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • Powder type sericite has been actively researched in the area of chemistry and mineralogy in terms of waste recycling. It is a material that can be obtained relatively inexpensively with a low thermal conductivity like general mica, so in order to improve the thermal conductivity of the mortar, powder type sericite was used in this work. Compressive strengths of mortar before and after high temperature exposure were compared and evaluated to determine the fire resistance of mortar with powder type sericite. According to the experimental results, it was found that the compressive strength decreased when powder type sericite was replaced with cement, but the decrease in compressive strength with the increasing amount of powder type sericite was insignificant. When powder type sericite was incorporated, the thermal conductivity decreased, and the residual strengths of the mortar specimens which were heat treated at 600℃, 900℃, and 1,200℃ were higher than that of plain mortar. From the comprehensive evaluation of the experimental results, it can be concluded that the powder type sericite has the potential to be used as a refractory material for cement composites.

Grinding Characteristics of Domestic Sericite using a Planetary Ball Mill (유성밀에 의한 국내 견운모 광석의 분쇄 특성)

  • Hee-Young Shin;Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.18-25
    • /
    • 2023
  • Sericite was ground with or without additives (LiNO3 or TiO2) using a planetary mill. The resultant ground products included the average particle size of 2-3 ㎛ (sericite only or sericite+LiNO3) and 0.5-0.6 ㎛ (sericite+TiO2) were obtained within 10 minutes of grinding time. respectively. In the grinding of the sericite without any addictive, the particle size initially decreased, but, as grinding time elapsed thereafter, agglomerates were formed and D50 increased over 10 ㎛. In contrast, when the additive was added, the particle size decreased as the grinding time elapsed and any aggregation was relatively not noticeable, compared with the grinding of the sericite only. As a result of measuring the zeta potential for the raw or the ground samples, variation of the zeta potential values according to pH at the early stage of the grinding with the addictives was gentler than that at the final stage of grinding, which showed the relatively similar trend to the pH-zeta potential correlation in grinding of raw sericite. In addition, as a result of the disintegration experiment through ultrasonic excitation, D50 decreased rapidly only until the disintegration time of about 50 minutes.

Occurrences and Genetic Environment of the Bobae Sericite Deposit, Pusan Area (부산 보배견운모광상의 산출상태와 생성환경)

  • Moon, Ji-Won;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.93-108
    • /
    • 1995
  • The Bobae sericite deposit occurs in rhyodacite of the Cretaceous volcanogenic sedimentary rocks, Upper Yucheon Group, in the western part of Pusan. The alteration zones are divided into the phyllie and prophylitic zone based on the mineral assemblages. The phyllic zone is subdivided into three subzones; Andalusite-Pyrophyllite, Sericite and Albite subzones. Oxides vs. $Al_2O_3$ contents show variations corresponding to mineral assemblage in each alteration zone. On the basis of bulk chemical compositions, it was found that $SiO_2$ increases in the Andalusite-Pyrophyllite subzone and $K_2O$ in the Sericite subzone. The oxygen, hydrogen and sulfur isotope analysis indicates that the fluids were originally derived from the residual magmatic solution. It has been mixed with abundant meteoric water later. The ore-forming temperatures obtained from sericite (illite) geothermometer are about $250{\sim}350^{\circ}C$. Considering the phase stability relation, PoT conditions of the andalusite-pyrophyllite subzone were estimated to be less than 0.5 kb and almost $400^{\circ}C$, respectively. The K-Ar ages of sericites indicate that the clay deposit is genetically related to the Cretaceous-Paleogene Masan Hornblende-Biotite Granite.

  • PDF

Desorption and Regeneration Characteristics for Nickel Ions Loaded onto Sericite Using HNO3 Solution

  • Jeon, Choong
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.347-350
    • /
    • 2013
  • Desorption characteristics for ions adsorbed onto sericite was performed by means of $HNO_3$ solution which was selected as the best desorbing agent in the previous work. Elution of nickel ions adsorbed onto sericite using $HNO_3$ solution was confirmed by means of scanning electron microscopy (SEM) & energy dispersive X-ray spectroscopy (EDX) analysis. Desorption efficiency for nickel ions was 100% at the 20 mM of concentration. Also, nickel ions was completely desorbed within 1.0 of S/L (mg/mL) ratio which is defined as the ratio of adding amount of adsorbent and volume of desorbing agent and desorption process was quickly carried out within 60min. Finally, removal efficiency of reused sericite for nickel ions was constantly maintained until the 4th cycle.

APPLICATIONS OF SERICITE IN WASTEWATER TREATMENT : REMOVAL OF Cu(II) AND Pb(II) FROM AQUEOUS SOLUTIONS

  • Tiwari, Diwakar;Kim, Hyoung-Uk;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.303-310
    • /
    • 2006
  • The aim of this study is to assess the applicability of sericite in wastewater treatment particularly the removal of two important heavy metal toxic ions viz., Cu(II) and Pb(II) from aqueous solutions. The batch type experiments showed that sericite is found to be one of useful natural sorbent for the removal of these two cations from aqueous solutions and it is also to be observed that with the increase in sorptive concentration amount of metal uptake increases and the concentration dependence data obtained are fitted well for the Langmuir adsorption isotherm rather than Freundlich adsorption model. Further, the Langmuir monolayer adsorption capacity is found to be $1.674\;mg\;g^{-1}$ for Cu(II) and $4.697\;mg\;g^{-1}$ for Pb(II). Kinetic studies enabled, an apparent equilibria can be achieved between soild/solution interface within ca 10 mins for Cu(II) and ca 90 mins for Pb(II). Moreover, the removal behavior of sericite for these two metal ions is greatly influenced by solution pH.

Mineralogical Study on High Aluminous meta-Claystone form the Chununsan Formation (천운산층내 고알루미나광석에 대한 광물학적 연구)

  • 이동진;이성록
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1988
  • The high aluminous meta-claystones are thinly bedded to metasedimentary rocks which belong to Chununsan Formation. Major high aluminous minerals in the ores ae andalusite, kaolinite and pyrophyllite. The other significant constituents are sericite, chloritoid and carbonaceous material, etc. Ores can be classified into 4 types according to mineral compositions; andalusite- kolinite-sericite, andalusite-kaolinite-chloritoid, kaolinite-sericite-pyrophyllite, and kaolinite-chloritoid-sericite ore. The formation of ore minerals are resulted from sedimentary, diagenetic, metamorphic and hydrothermal processes. Andalusite are formed by low-grade metamorphism under the conditions of $400~500^{\circ}C$ and below 4kb, from the view-point of mineral stability field, illite-mica crystallinity and graphitization degree of the carbonaceous material. Andalusites are partly altered to kaolinite, forming major mineral phase in the ores.

  • PDF

Mineral Chemistry and Stable Isotope Composition of Sericite from the Sangdong Sericite Mine in the Kimhae Area (김해지역 상동광상산 견운모의 광물화학 및 안전동위원소 조성)

  • Kim, Jong Dae;Moon, Hi-Soo;Jin, Sheng-Jin;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.275-282
    • /
    • 1992
  • Mineral chemistry and stable isotope compositions of sericites from the Sangdong mine in the Kimhae area, Kyungsangnamdo, were studied. The Sangdong sericite deposit occurs in rhyolitic tuff of late Cretaceous age and considers to have been fonned by the hydrothennal alteration. The sericites are classified as $2M_1$ polytype and are characterized by less celadonite substitution indicating muscovite-phengite series. Their compositions are very close to that of the ideal muscovite but net layer charge ranges 1.71~1.91 which is less than 2 per formula unit of ideal muscovite. Predominant interlayer cation is K and K/(K+Na) ratio ranges 0.91 and 0.93. ${\delta}^{18}O$ values of sericites and quartz separated from the ore range 7.70~9.07 and 8.20~10.87‰, respectively. The formation temperature of sericite can be estimated as $315{\sim}340^{\circ}C$( based on ${\delta}^{18}O$ value of sericite and ${\delta}D$ value of of Cretaceous meteoric water. Their formation temperature discrepancy between coexisting sericite and quartz indicates that they are in isotopically inequilibrium. Two types of quartz, coarse grained phenocrysts and micrcrystalline aggregates are observed and the former must have been formed during volcanic eruption and remained isotopically unexchanged during hydrothermal alteration period. ${\delta}^{14}S$ values of pyrites range 1.9~4.5‰ which is within a range of volcanogenic sulfur, indicating magmatic source.

  • PDF

Improvement in Grade of Sericite Ore by Dry Beneficiation (건식정제에 의한 견운모광의 품위향상연구)

  • Cho, Keon-Joon;Kim, Yun-Jong;Park, Hyun-Hae;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • A study on the dry beneficiation of sericite occurring in the Daehyun Mine of the Republic of Korea region as performed by applying selective grinding and air classification techniques. Quartz and sericite occurred in the raw ore as major components. The results of liberation using a ball mill and an impact mill showed that the contents of $R_2O$ were increased while $SiO_2$ was decreased in proportion to decreasing particle size. According to the XRD, XRF analysis and the EDS of SEM analysis, the ball mill gave a better grade product in $R_2O$ content than the impact mill when the particle size was the same. When the raw ore was ground by the impact mill with arotor speed 57.6 m/sec and then followed by 15,000rpm classification using an air classifier, the chemical composition of the over flowed product was 49.65wt% $SiO_2$, 32.15wt% $Al_2O_3$, 0.13wt% $Fe_2O_3$, 10.37wt% $K_2O$, and 0.14wt% $Na_2O$. This result indicates that the $R_2O$ contents were increased by 49.5% compared to that of the raw ore. From these results described above, it is suggested that hard mineral such as Quartz little ground by selective grinding using impact mill whereas soft mineral such as sericite easily ground to small size. As a result of that hard minerals can be easily removed from the finely ground sericite by air classification and the $R_2O$ grade of thus obtained concentrate was improved to higher than 10wt% which can be used for ceramics raw materials.