• Title/Summary/Keyword: Serially Sectioned Image

Search Result 8, Processing Time 0.023 seconds

Representation of Serially Sectioned Images of Entire Human Body by Improvement of Notch Filter (놋치 필터 개선을 통한 인체 연속절단 영상 재현)

  • Park, Ki-Seok;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.15-24
    • /
    • 2011
  • Recently various anatomic researches by using serially sectioned images in VK(Visible Korean) project are in progress. In that sense, it is very important and necessary to represent images which keep information of the original anatomic images. In this regard, there are some studies to get rid of slice patterns in coronal and sagittal images. However, according to the rapid spatial frequency changes, the ringing effect occurred in common. In addition, because of merge with the original images which have splice patterns, those patterns appeared again. Therefore, in this study we found effective color space to apply to FFT(Fast Fourier Transform) and notch filter in getting rid of the slice patterns. To verify this, we used RGB, LAB, CMYK, HSV and HSL color space. Secondly we got rid of and alleviated the ringing effect by improving notch filter. To verify this, we compared proposed method with previous study on the basis of original images by visual method and objective values. These result images are expected to contribute to anatomy research in relation to VK project.

Emission-Notch Filter Fusion design for serially sectioned human image improvement (인체연속절단면 영상 개선을 위한 방사형-놋치필터 융합 설계)

  • Cho, Do Hee;Park, Hyung-Ju;Har, Dong-Hwan
    • Korea Science and Art Forum
    • /
    • v.25
    • /
    • pp.379-388
    • /
    • 2016
  • There are some studies to get rid of slice patterns in coronal and sagittal images by FFT(Fast Fourier Transform) and Notch filter. However, the use of a notch filter is the ringing effect according to the rapid frequency change occurs in common. Therefore, this study will be to evaluate the shape and effect of the notch filter. In addition, it is proposed a new notch filter design. Results of the study are as follows. First, Emission-Notch filter was relatively naturally correcting the cutting pattern. Second, Emission-Notch filter to use as Ringing effect is reduced relatively. The next through these findings and further research progress more completely removed the Ringing effect, and expects to reproduce the data close to the actual human body information.

A STUDY ON TEMPOROMANDIBULAR JOINT DYSFUNCTION USING MAGNETIC RESONANCE IMAGING (자기 공명 영상을 이용한 악관절 기능 장애에 관한 연구)

  • Lee Moon Bae;Kim Jae Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.29-37
    • /
    • 1992
  • The temporomandibular joint was evaluated using magnetic resonance imaging using a urface coil in 11 patients having reciprocal clicking or locking and compared with the normal joint in five subjects. Serial multisection 3㎜-thick parasagittal, paracoronal, and axial image on both closing and opening mouth were obtained with a 1.5 Tesla MR system and surface coil using CSMEMP, GRASS, MPGR, powerful extensions of fast imaging that is currently under clinical evaluation. MR images obtained were analized correlating with the theory of internal derangement. The obtained results were as follows: 1. The serial findings of structures in joint were determined on the serially sectioned images of joint with reciprocal clicking or locking by CSMEMP and MPGR on closing mouth. 2. The delta shaped white images of synovial fluid in the glenoid fossa and on the posterior surface of condyle were revealed on the parasagittal images by MPGR on opening mouth as in the normal joints. 3. The white image of joint fluid surrounding meniscus was recognized on the paracoronal image by GRASS on opening mouth as in the normal joints. 4. In joints having temporomandibular dysfunction the smooth image of displaced meniscus was recognized, but otherwise in the normal joints the image of muscle was noted on the paracoronal image sectioned at the anterior portion of condyle by GRASS. 5. The more thickened fascial plane between superior and inferior belly of lateral pterygoid muscle was not recognizable in joints having temporomandibular dysfunction than in the normal joints.

  • PDF

3D Segmentation for High-Resolution Image Datasets Using a Commercial Editing Tool in the IoT Environment

  • Kwon, Koojoo;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1126-1134
    • /
    • 2017
  • A variety of medical service applications in the field of the Internet of Things (IoT) are being studied. Segmentation is important to identify meaningful regions in images and is also required in 3D images. Previous methods have been based on gray value and shape. The Visible Korean dataset consists of serially sectioned high-resolution color images. Unlike computed tomography or magnetic resonance images, automatic segmentation of color images is difficult because detecting an object's boundaries in colored images is very difficult compared to grayscale images. Therefore, skilled anatomists usually segment color images manually or semi-automatically. We present an out-of-core 3D segmentation method for large-scale image datasets. Our method can segment significant regions in the coronal and sagittal planes, as well as the axial plane, to produce a 3D image. Our system verifies the result interactively with a multi-planar reconstruction view and a 3D view. Our system can be used to train unskilled anatomists and medical students. It is also possible for a skilled anatomist to segment an image remotely since it is difficult to transfer such large amounts of data.

Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain (사람 뇌의 3차원 영상과 가상해부 풀그림 만들기)

  • Chung, M.S.;Lee, J.M.;Park, S.K.;Kim, M.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs

  • Kim, Dai Hyun;Ahn, Hyo Hyun;Sun, Woong;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.134-139
    • /
    • 2016
  • Detailed structural and molecular imaging of intact organs has incurred academic interest because the associated technique is expected to provide innovative information for biological investigation and pathological diagnosis. The conventional methods for volume imaging include reconstruction of images obtained from serially sectioned tissues. This approach requires intense manual work which involves inevitable uncertainty and much time to assemble the whole image of a target organ. Recently, effective tissue clearing techniques including CLARITY and ACT-PRESTO have been reported that enables visualization of molecularly labeled structures within intact organs in three dimensions. The central principle of the methods is transformation of intact tissue into an optically transpicuous and macromolecule permeable state without loss of intrinsic structural integrity. The rapidly evolving protocols enable morphological analysis and molecular labeling of normal and pathological characteristics in large assembled biological systems with single-cell resolution. The deep tissue volume imaging will provide fundamental information about mutual interaction among adjacent structures such as connectivity of neural circuits; meso-connectome and clinically significant structural alterations according to pathologic mechanisms or treatment procedures.

Virtual Dissection System of Cadaver Heart Using 3-Dimensional Image

  • Chung, Min-Suk;Lee, Je-Man;Kim, Min-Koo;Park, Seung-Kyu
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.357-360
    • /
    • 1997
  • For medical students and doctors, knowledge of the 3-dimensional (3D) structure of the heart is very important in diagnosis and treatment of the heart diseases. 2-dimensional (2D) tools (e.g. anatomy book) or classical 3D tools (e.g. plastic model) are not sufficient or understanding the complex structures of the heart. Moreover, it is not always guaranteed to dissect the heart of cadaver when it is necessary. To overcome this problem, virtual dissection systems of the heart have been developed. But these systems are not satisfactory since they are made of radiographs; they are not true 3D images; they can not be used to dissect freely; or they can only be operated on the workstation. It is also necessary to make the dissection systems incorporating the various races and tribes because of the organ's difference according to race and tribe. This study was intended to make the 3D image of the heart from a Korean cadaver, and to establish a virtual dissection system of the heart with a personal computer. The procedures or manufacturing this system were as follows. 1. The heart from a Korean adult cadaver was embedded with gelatin solution, and serially cross-sectioned at 1mm-thickness on a meat slicer. Pictures or 153 cross-sectioned specimens were inputted into the computer using a digital camera ($756{\times}504$ resolution, true color). 2. The alignment system was established by means of the language of IDL, and applied to align 2D images of the heart. In each of 2D images, closed curves lining clean and dirty blood pathways were drawn manually on the CorelDRAW program. 3. Using the language of IDL, the 3D image and the virtual dissection system of the heart were constructed. The virtual dissection system of the heart allowed or ree rotation, any-directional sectioning, and selected visualization of the heart's structure. This system is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Production and Usage of Korean Human Information in KISTI (KISTI에 있어서 한국인 인체정보의 생산과 활용)

  • Lee, Sang-Ho;Lee, Seung-Bock
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.416-421
    • /
    • 2010
  • The KISTI (Korea Institute of Science and Technology Information) began to produce the Korean human information called Visible Korean and Digital Korean since 2000 because there was no human information in Korea which could represent the physical characteristics of Korean human body. The Visible Korean consists of CT, MR, sectioned and segmented images of Korean human body. We obtained the serially sectioned images by grinding the Korean cadaver in horizontal direction and segmented these images by outlining the inner organs of human. We have produced the sectioned images of Korean male whole body, male head, and female pelvis in2008. The segmentation and 3D reconstruction of these images are now in proceeding. The Digital Korean consists of CT images of about 100 Korean cadavers. These CT images were segmented by individual bone, reconstructed to produce the 3D bone models and the skin surface model was also added. The mechanical properties of individual bones were obtained by measuring the property of individual bone sample. We have distributed these Korean human informations to users in domestic and abroad. About 70 institutes in domestic, and 20 institutes in abroad have used our data in research use and nearly 160 proceedings and articles were published since 2001. We think these human informations have a role of medical information infrastructure that could be used in the field of medical education, biomechanics, virtual reality etc.