• Title/Summary/Keyword: Serial reaction time

Search Result 35, Processing Time 0.029 seconds

Virucidal Efficacy against Avian Influenza Virus of a Disinfectant Spray Containing Grapefruit Seed Extracts, Citric Acid, Malic Acid and Benzalkonium Chloride (자몽종자추출물, 구연산, 사과산 그리고 염화벤잘코늄을 주성분으로 하는 스프레이형 소독제의 조류인플루엔자바이러스에 대한 살바이러스 효과)

  • Cha, Chun-Nam;Park, Eun-Kee;Jung, Ji-Youn;Yoo, Chang-Yeol;Kim, Suk;Lee, Hu-Jang
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.4
    • /
    • pp.266-273
    • /
    • 2016
  • Objectives: This study evaluated the virucidal efficacy against avian influenza virus (AIV) of a disinfectant spray containing 0.25% grapefruit seed extract, 0.2% citric acid, 0.0625% malic acid and 0.0125% benzalkonium chloride. Methods: The disinfectant spray was diluted several times with hard water (HW) and organic matter (OM). Two point five mL of each diluent was added into each test tube, and 2.5 mL of AIV suspension was inserted into each test tube. After 30 minutes of virus-disinfectant contact reaction at $4^{\circ}C$, 2.5 mL of 10% inactivated fetal bovine serum was added into each test tube to neutralize the sanitizer efficacy. The neutralized solutions were serial 10-fold dilutions with phosphate buffer solution, and 0.2 mL of the diluents was injected into the allantoic cavity of five ten-day-old-chickens per dilution time. After incubation of the embryos for five days, the viability of the AIV was examined by hemagglutination titer. The valid dilution of the disinfectant spray was estimated according to the dilution time that the virus titer was inactivated more than $10^4$ 50% egg-infective dose (EID50)/mL compared with pathogen control. Results: In HW and OM conditions, the valid dilutions of the disinfectant spray against AIV were seven- and three-fold dilutions, respectively. The AIV titer of the pathogen control was more than 6.1 log10EID50/mL, and there was no embryonic toxicity. Conclusion: The present study showed that this disinfectant spray has effective virucidal activity against AIV.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Comparison of Various DNA Extraction Methods for Diagnosis of Tuberculosis Using a Polymerase Chain Reaction (중합효소연쇄반응을 이용한 결핵의 진단에 있어서 각종 DNA 추출방법의 비교)

  • Kim, Ju-Ock;Han, Pyo-Seong;Hong, Seok-Cheol;Lee, Jong-Jin;Cho, Hai-Jeong;Kim, Sun-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Background: The polymerase chain reaction (PCR) is a very sensitive method for the detecting of mycobacterial DNA. There are many reports revealing the efficacy of PCR for the diagnosis of M. tuberculosis, but there are many different methods for DNA extraction from Mycobacterium tuberculosis. Bead beater method is a very useful method for DNA extraction from clinical spectimens, but its procedures are relatively complicated and time-consuming. So we studied other methods for the DNA extraction from Mycobacterium tuberculosis $H_{37}Rv$ and some clinical specimens (5 smear positive sputa and 5 smear negative CSF). Method: We extracted the mycobacterial DNA with 6 different methods from H37Rv strain and clinical specimens. The methods included SDS-microwave oven method, NaOH lysis method, Triton X-100-Proteinase K method, Lysis buffer method, SDS-proteinase K method and bead beater method. The target DNA was 123bp of IS6110 and was detected by examination of ethidium bromide-stained agarose gels. Results: Among 6 methods, SDS-proteinase K method, bead beater method, lysis buffer method and triton X-100-proteinase K method were excellent, but SDS-proteinase K method was the best method in the aspect of simplicity and cost-effectiveness. Conclusion: We suggest that SDS-porteinase K method is a simple and convinient method and might be the best method for the extraction of mycobacterial DNA.

  • PDF

3-Dimensional Reconstruction of Parallel fiber-Purkinje Cell Synapses Using High-Voltage Electron Microscopy (고압전자현미경을 이용한 소뇌 평행섬유-조롱박세포간 신경연접의 3차원 재구성)

  • Lee, Kea-Joo;Kweon, Hee-Seok;Kang, Ji-Seoun;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Synapses are contact points where one neuron communicates with another. The morphological change of synapses under various physiological or pathological conditions has long been hypothesized to modify their functional properties. 3-dimensional (3-D) reconstruction of synapses with serial ultrathin sections has contributed to the understanding of ultrastructural dimensions and compositions of synapses. The 3-D reconstruction procedures, however, require a great amount of expertise as well as include prohibitively timeconsuming processes. Here, we introduce efficient 3-D reconstruction technique using high-voltage electron microscopy (HVEM). Primarily, we established an optimal section thickness and staining condition to observe synaptic structures in detail under HVEM. The result showed that synaptic profiles were preserved at the section thickness of 250 nm without the overlapping of synaptic ultrastructures. An increase in the reaction time of en bloc staining was most efficient to enhance contrast than the extension of postembedding staining or the addition of uranyl acetate during dehydration. Then, 3-D reconstruction of parallel fiber-Purkinje cell synapses in the rat cerebellum was carried out with serial HVEM images and reconstruction software. The images were aligned and the contours of synapses were outlined on each section. 3-D synapses were finally extracted from the section files by grouping all the synaptic contours. The reconstructed synapse model clearly demonstrated the configuration of pre and postsynaptic components. These results suggest that 3-D reconstruction of synapses using HVEM is much efficient and suitable for massive quantitative studies on synaptic connectivity than conventional TEM approach using numerous ultrathin sections.

Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity

  • Kim, Young June;Ahn, Kwang Sung;Kim, Minjeong;Kim, Min Ju;Ahn, Jin Seop;Ryu, Junghyun;Heo, Soon Young;Park, Sang-Min;Kang, Jee Hyun;Choi, You Jung;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.439-445
    • /
    • 2017
  • Objective: Production of alpha-1,3-galactosyltransferase (${\alpha}GT$)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous ${\alpha}GT$ knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce ${\alpha}GT$-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. Methods: Miniature pig fibroblasts were transfected with ${\alpha}GT$ gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous ${\alpha}GT$ gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-${\alpha}$-1,3-galactose, an epitope produced by ${\alpha}GT$. Using magnetic activated cell sorting, cells with monoallelic disruption of ${\alpha}GT$ were removed. Remaining cells with LOH carrying biallelic disruption of ${\alpha}GT$ were used for the second round NT to produce homozygous ${\alpha}GT$ gene-targeted piglets. Results: Monoallelic mutation of ${\alpha}GT$ gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous ${\alpha}GT$ gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous ${\alpha}GT$ knockout piglets. Conclusion: The present study demonstrates that the time required for the production of ${\alpha}GT$-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.