• 제목/요약/키워드: Serial Actuators

검색결과 24건 처리시간 0.015초

관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발 (Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis)

  • 최현석;최철우;한창수;한정수
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권2호
    • /
    • pp.127-132
    • /
    • 2003
  • 본 논문에서는 관절 경직 환자의 재활 치료를 위한 공압 실린더를 이용한 하이브리드형 로봇을 연구 개발하였다. 공압 실린더는 우수한 컴플라이언스를 가지고 있고 부피나 중량에 비해 높은 구동력을 가지고 있다 낮은 강성을 지닌 공압 구동기는 안정이 보장되어야 하는 물리 치료용 로봇의 구현에 적용하기 적당하다. 본 연구에서 제안한 로봇 시스템은 직렬형과 병렬형을 결합한 하이브리드 형으로 위치 결정부와 자세 결정부로 구분되며 하이브리드 구조를 통해 넓은 작업영역과 구동력을 얻을 수 있었다. 슬라이딩 모드 제어기를 이용하여 로봇 시스템의 공압 서보시스템의 추종성과 안정성을 얻을 수 있었으며 실험을 통하여서 개발된 시스템에 대한 검증을 하였다.

중력을 이용한 병렬형 머니퓰레이터 구동부의 마찰력 보상 (Friction Force Compensation for Actuators of a Parallel Manipulator Using Gravitational Force)

  • 이세한;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.609-614
    • /
    • 2005
  • Parallel manipulators have been used for a variety of applications, including the motion simulators and mechanism for precise machining. Since the ball screws used for linear motion of legs of the Stewart-Gough type parallel manipulator provide wider contact areas than revolute joints, parallel manipulators are usually more affected by frictional forces than serial manipulators. In this research, the method for detecting the frictional forces arising in the parallel manipulator using the gravitational force is proposed. First, the reference trajectories are computed from the dynamic model of the parallel manipulator assuming that it is subject to only the gravitational force without friction. When the parallel manipulator is controlled so that the platform follows the computed reference trajectory, this control force for each leg is equal to the friction force arising in each leg. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.

CAN 통신을 이용한 다중모터 위치제어기 구현 (An Implementation of the Position Controller for Multiple Motors Using CAN)

  • 이건영
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권2호
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents a controller for the multiple DC motors using the CAN(Controller Area Network). The controller has a benefit of reducing the cable connections and making the controller boards compact through the network including expansibility. CAN, among the field buses, is a serial communication methodology which has the physical layer and the data link layer in the ISO's OSI (Open System Interconnect) 7 layered reference model. It provides the user with many powerful features including multi-master functionality and the ability to broadcast / multicast telegrams. When we use a microprocessor chip embedding the CAN function, the system becomes more economical and reliable to react shortly in the data transmission. The controller, we proposed, is composed of two main controllers and a sub controller, which have built with a one-chip microprocessor having CAN function. The sub controller is plugged into the Pentium PC to perform a CAN communication, and connected to the main controllers via the CAN. Main controllers are responsible for controlling two motors respectively. Totally four motors, actuators for the biped robot in our laboratory, are controlled in the experiment. We show that the four motors are controlled properly to actuate the biped robot through the network in real time.

평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현 (Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator)

  • 송낙윤;조황
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF