• 제목/요약/키워드: Sequential linear programming

검색결과 94건 처리시간 0.03초

선박용 체크밸브의 최적설계에 관한 연구 (A Study on the Optimization Design of Check Valve for Marine Use)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.56-61
    • /
    • 2017
  • The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.

Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials

  • Baek Seok-Heum;Cho Seok-Swoo;Kim Hyun-Su;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.366-375
    • /
    • 2006
  • In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps: the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it establishes the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.

유연성과 강성을 고려한 최적구조설계

  • 민승재
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1432-1440
    • /
    • 1997
  • The flexibility as well as the stiffness is required to perform mechanical function of a structure such as compliant mechanisms, which can be applied to MEMS(Micro-Electro-Mechanical Systems), flexible manufacturing devices, and design for no assembly. In this paper, the optimal design problem to achieve both structural flexibility and stiffness is formulated using multi-objective function, and the optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanisms are presented to validate the design method.

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

MILP model for short-term scheduling of multi-purpose batch plants with batch distillation process

  • Ha, Jin-Juk;Lee, Euy-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1826-1829
    • /
    • 2003
  • Fine chemical production must assure high-standard product quality as well as characterized as multi-product production in small volumes. Installing high-precision batch distillation is one of the common elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. In this study, we investigate the optimal operation strategy and production planning of a sequential multi-purpose plants consisting of batch processes and batch distillation with unlimited intermediate storage. We formulated this problem as an MILP model. A mixed-integer linear programming model is developed based on the time slot, which is used to determine the production sequence and the production path of each batch. Illustrative examples show the effectiveness of the approach.

  • PDF

변위구속조건을 고려한 컴플라이언트 메커니즘 설계 (Compliant Mechanism Design with Displacement Constraint)

  • 김영기;민승재
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1779-1786
    • /
    • 2002
  • When the topology optimization is applied to the design of compliant mechanism, unexpected displacements of input and output port are generated since the displacement control is not included in the formulation. To devise a more precise mechanism, displacement constraint is formulated using the mutual potential energy concept and added to multi-objective function defined with flexibility and stiffness of a structure. The optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanism with displacement constraint are presented to validate the proposed design method.

엇갈린 핀 배열을 갖는 평판 열교환기의 최적 설계 (Design Optimization of Plate Heat Exchanger with Staggered Pin Arrays)

  • 박경우;최동훈;이관수;장규호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1441-1446
    • /
    • 2003
  • The design optimization of the plate heat exchanger with staggered pin arrays for a fixed volume is performed numerically. The flow and thermal fields are assumed to be a streamwise-periodic flow and heat transfer with constant wall temperature and they are solved by using the finite volume method. The optimization is carried out by using the sequential linear programming (SLP) method and the weighting method is used for solving the multi-objective problem. The results show that the optimal design variables for the weighting coefficient of 0.5 are as follows; S=6.497mm, P=5.496mm, $D_1=0.689mm$, and $D_2=2.396mm$. The Pareto optimal solutions are also presented.

  • PDF

램 가속기 성능 향상을 위한 예 혼합기 조성비 최적화에 관한 연구

  • 전용희;이재우;변영환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1999년도 제13회 학술강연논문집
    • /
    • pp.15-15
    • /
    • 1999
  • 램 가속기에 대한 연구는 램 가속기의 작동 조건이 고온, 고압, 초고속이라는 점과 가속기 내부에서 급격한 화학반응이 수반된다는 특성으로 인하여 실험과 해석상의 상당한 어려움이 존재한다. 램 가속기는 작동 모드에 따라 탄체 후방의 열적 질식 조건을 이용한 열적 질식 모드(Thermally Choked Mode)와 탄체 표면에 형성되는 데토네이션파를 이용한 초폭굉모드(Superdetonative Mode)로 나뉘어진다. 본 연구는 초폭굉 모드로 작동하는 램 가속기의 작동 성능 향상을 위한 방법으로 수치 최적화 기법을 이용한 램 가속기 내부 예 혼합기의 조성비 최적화를 수행하였다. 설계 변수로는 수소와 질소의 조성비를 선정하였으며, 최적 설계 목표는 일정한 질량과 형상을 갖는 탄체를 초기속도 2500m/s에서 3000m/s로 가속시키기 위하여 필요한 최소 램 가속관의 길이로 정하였다. 본 연구에서는 구베법에 기반한 Simplex 방법 및 SLP(Sequential Linear Programming)등의 수치 최적화 기법을 적용하였고, 가속기 내부의 유동장은 해석의 효율성을 고려하여 이차원 비점성 유동으로 가정하였고, 비평형 화학반응 해석을 수행하였다.

  • PDF

면진 구조물의 최적설계에 관한 연구(I) (A Study on the Optimum Design of Base Isolated Structures (I))

  • 정정훈;김병현;양용진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.339-347
    • /
    • 2001
  • A probabilistic optimum design method of the base isolation system consisting of linear spring, viscous damper and frictional element is presented. For the probabilistic approach, the base excitation is assumed to be a stationary Gaussian filtered random process. For optimum design, the objective function and constraints are derived based on the stochastic responses of the system. As a numerical example, the optimum design problem of a three-story base isolated shear type structure is formulated and solved by the sequential quadratic programming method. As a result, the effects of variation of design variables such as parameters of the base isolation system and the mass of base on the objective function and constraints are investigated and the optimum parameters of the base isolation system under study are derived.

  • PDF

압전-구조-음향 연성계의 압전 액츄에이터 최적설계 (Shape Optimization of Piezoelectric Materials for Piezoelectric-Structure-Acoustic System)

  • 왕세명;이강훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1627-1632
    • /
    • 2000
  • Recently, piezoelectric materials have attracted considerable attention because of its self-sensing and actuating properties. To model smart structures, numerical modeling of structures with piezoelectric devices is essential. As many factors affect the performance of smart structures, optimization of these parameters is necessary. In this paper, the shape design sensitivity analysis of the 3D piezoelectric and structural elements is developed and shape optimization is performed. For the evaluation of the sensitivity, the finite element method is used. For the shape sensitivity, the domain velocity field is calculated. An acoustic cavity model is presented as a numerical example to study the feasibility of the formulation. The continuum sensitivity is compared with the results of the finite difference method by ANSYS. And the sequential linear programming (SLP) algorithm is used as the optimization algorithm.

  • PDF