• 제목/요약/키워드: Sequential learning

검색결과 250건 처리시간 0.031초

인공신경망과 장단기메모리 모형의 유출량 모의 성능 분석 (Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis)

  • 김지혜;강문성;김석현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.320-320
    • /
    • 2019
  • 유역의 수문 자료를 정확하게 분석하는 것은 수리 구조물을 효율적으로 운영하기 위한 중요한 요소이다. 인공신경망(Artificial Neural Networks, ANNs) 모형은 입 출력 자료의 비선형적인 관계를 해석할 수 있는 모형으로 강우-유출 해석 등 수문 분야에 다양하게 적용되어 왔다. 이후 기존의 인공신경망 모형을 연속적인(sequential) 자료의 분석에 더 적합하도록 개선한 회귀신경망(Recurrent Neural Networks, RNNs) 모형과 회귀신경망 모형의 '장기 의존성 문제'를 개선한 장단기메모리(Long Short-Term Memory Networks, 이하 LSTM)가 차례로 제안되었다. LSTM은 최근에 주목받는 딥 러닝(Deep learning) 기법의 하나로 수문 자료와 같은 시계열 자료의 분석에 뛰어난 성능을 보일 것으로 예상되며, 수문 분야에서 이에 대한 적용성 평가가 요구되고 있다. 본 연구에서는 인공신경망 모형과 LSTM 모형으로 유출량을 모의하여 두 모형의 성능을 비교하고 향후 LSTM 모형의 활용 가능성을 검토하고자 하였다. 나주 수위관측소의 수위 자료와 인접한 기상관측소의 강우량 자료로 모형의 입 출력 자료를 구성하여 강우 사상에 대한 시간별 유출량을 모의하였다. 연구 결과, 1시간 후의 유출량에 대해서는 두 모형 모두 뛰어난 모의 능력을 보였으나, 선행 시간이 길어질수록 LSTM의 정확성은 유지되는 반면 인공신경망 모형의 정확성은 점차 떨어지는 것으로 나타났다. 앞으로의 연구에서 유역 내 다양한 수리 구조물에 의한 유 출입량을 추가로 고려한다면 LSTM 모형의 활용성을 보다 더 확장할 수 있을 것이다.

  • PDF

비디오 감시 시스템을 위한 멀티코어 프로세서 기반의 병렬 SVM (Multicore Processor based Parallel SVM for Video Surveillance System)

  • 김희곤;이성주;정용화;박대희;이한성
    • 정보보호학회논문지
    • /
    • 제21권6호
    • /
    • pp.161-169
    • /
    • 2011
  • 최근 지능형 비디오 감시 시스템은 영상 분석 및 인식기술 등의 보다 진화된 기술 개발을 요구하고 있다. 특히, 비디오 영상에서 객체를 식별하기 위하여 Support Vector Machine(SVM)과 같은 기계학습 알고리즘이 이용된다. 그러나 SVM은 대용량의 데이터를 학습시키기 위하여 많은 계산량이 필요하기 때문에 수행시간을 효율적으로 감소시키기 위하여 병렬처리 기법을 적용할 필요가 있다. 본 논문에서는, 최근 사용이 증가하고 있는 멀티코어 프로세서를 활용한 SVM 학습의 병렬처리 방법을 제안한다. 4-코어 프로세서를 이용한 실험 결과, 제안 방법은 SVM 학습의 순차처리 방법과 비교하여 2.5배 정도 수행시간이 감소됨을 확인하였다.

Effects of Differences in Electronic Course Design on University Students' Programming Skills

  • Al-Zahrani, Majed bin Maili bin Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.21-26
    • /
    • 2022
  • This study touched on the effect of the different electronic course designs on the programming skills of university students. The researcher used the experimental research design of a quasi-experimental of two experimental groups to achieve the objectives of the study. The first group underwent an electronic course designed in the holistic pattern, and the second group was taught a course in a sequential pattern. This experimental design was intended to measure the impact of these two learning modes on the learners' cognitive and performance achievement of programming skills. An achievement test and observational form were the data collection tools. Data were analyzed statistically using Pearson correlation, Mann Whitney Test, and Alpha Cronbach. The findings revealed statistically- significant differences between the mean scores of the students of the first and second experimental groups in favor of the former concerning the observational form and the latter in the cognitive test. Based on the findings, some recommendations are suggested. Due to their effectiveness in the educational process, expanding using the e-courses at universities is vital. The university teachers are highly recommended to design e-courses and provide technical and material support to the e-courses user to fulfill their design purpose.

Mobile App Recommendation with Sequential App Usage Behavior Tracking

  • Yongkeun Hwang;Donghyeon Lee;Kyomin Jung
    • Journal of Internet Technology
    • /
    • 제20권3호
    • /
    • pp.827-838
    • /
    • 2019
  • The recent evolution of mobile devices and services have resulted in such plethora of mobile applications (apps) that users have difficulty finding the ones they wish to use in a given moment. We design an app recommendation system which predicts the app to be executed with high accuracy so that users are able to access their next app conveniently and quickly. We introduce the App-Usage Tracking Feature (ATF), a simple but powerful feature for predicting next app launches, which characterizes each app use from the sequence of previously used apps. In addition, our method can be implemented without compromising the user privacy since it is solely trained on the target user's mobile usage data and it can be conveniently implemented in the individual mobile device because of its less computation-intensive behavior. We provide a comprehensive empirical analysis of the performance and characteristics of our proposed method on real-world mobile usage data. We also demonstrate that our system can accurately predict the next app launches and outperforms the baseline methods such as the most frequently used apps (MFU) and the most recently used apps (MRU).

Fault detection in blade pitch systems of floating wind turbines utilizing transformer architecture

  • Seongpil Cho;Sang-Woo Kim;Hyo-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • 제92권2호
    • /
    • pp.121-131
    • /
    • 2024
  • This paper proposes a fault detection method for blade pitch systems of floating wind turbines using transformer-based deep-learning models. Transformers leverage self-attention mechanisms, efficiently process time-series data, and capture long-term dependencies more effectively than traditional recurrent neural networks (RNNs). The model was trained using normal operational data to detect anomalies through high reconstruction losses when encountering abnormal data. In this study, various fault conditions in a blade pitch system, including environmental load cases, were simulated using a detailed model of a spar-type floating wind turbine, the data collected from these simulations were used to train and test the transformer models. The model demonstrated superior fault-detection capabilities with high accuracy, precision, recall, and F1 scores. The results show that the proposed method successfully identifies faults and achieves high-performance metrics, outperforming existing traditional multi-layer perceptron (MLP) models and long short-term memory-autoencoder (LSTM-AE) models. This study highlights the potential of transformer models for real-time fault detection in wind turbines, contributing to more advanced condition-monitoring systems with minimal human intervention.

스캔 환경에서 간접 유추 알고리즘을 이용한 경로 지연 고장 검사 입력 생성기 (Delay Fault Test Pattern Generator Using Indirect Implication Algorithms in Scan Environment)

  • 김원기;김명균;강성호
    • 한국정보처리학회논문지
    • /
    • 제6권6호
    • /
    • pp.1656-1666
    • /
    • 1999
  • 회로가 복잡해지고, 고속화되면서 회로의 동작에 대한 검사 뿐 아니라, 회로가 원하는 시간 내에 동작함을 보장하는 지연 검사의 중요성이 점점 커지고 있다. 본 논문에서는 주사환경을 사용하는 순차회로에서의 경로 지연 고장을 위한 테스트 패턴 생성 과정을 효율적으로 수행할 수 있도록 빠른 시간에 간접 유추를 수행할 수 있는 알고리즘을 제안한다. 구조적으로 발생 가능한 정적 학습 과정은 테스트 패턴 생성 과정 중의 선행 처리 단계에서 각각의 게이트에 정적 학습이 발생할 수 있는 경우를 분석하여 그 정보를 각각의 게이트에 대해 저장하고 있다가 알고리즘을 이용한 테스트 패턴 생성 과정 중 조건에 만족하는 경우에 유추될 수 있는 값을 바로 할당하게 된다. 본 논문에서는 이를 지연고장 검출에 맞도록 수정하여 이용하였다. 회로 내에 몇몇 주입력에서 나온 신호선을 모두 포괄하는 분할지점이 존재하면, 이 지점을 지나는 경로들 중에 그 이전, 혹은 이후의 경로가 동일한 경로들은 분할지점에 의해 분할된 입력의 부분들이 같은 입력값을 필요로 함을 예상할 쑤 있다. 본 논문에서는 경로 지연 고장 검출에서 유용하게 사용될 수 있는 이러한 회로분할을 사용하여 보다 효율적으로 테스트 입력을 생성하였다. 마지막으로, 이 두 가지 알고리즘을 적용한 효율적인 경로 지연 고장 테스트 입력 생성기를 개발하였으며, 알고리즘의 효용성을 실험을 통하여 입증하였다.

  • PDF

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

순환신경망을 이용한 한글 필기체 인식 (Hangul Handwriting Recognition using Recurrent Neural Networks)

  • 김병희;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.316-321
    • /
    • 2017
  • 온라인 방식의 한글 필기체 인식 문제를 분석하고 순환신경망 기반의 해법을 모색한다. 한글 낱글자 인식 문제를 순서데이터 레이블링의 관점에서 서열 분류, 구간 분류, 시간별 분류의 세 단계로 구분하여 각각에 대한 해법을 살펴보며, 한글의 구성 원리를 고려한 해결 방안을 정리한다. 한글 2350글자에 대한 온라인 필기체 데이터에 GRU(gated recurrent unit)의 다층 구조를 가지는 서열 분류모델을 적용한 결과, 낱글자 인식 정확도는 86.2%, 초 중 종성 구성에 따른 6가지 유형 분류 정확도는 98.2%로 측정되었다. 유형 분류 모델로 획의 진행에 따른 유형 변화 역시 높은 정확도로 인식하는 결과를 통해, 순환신경망을 이용하여 순서 데이터에서 한글의 구조와 같은 고차원적 지식을 학습할 수 있음을 확인하였다.

깊은 신경망 기반 대용량 텍스트 데이터 분류 기술 (Large-Scale Text Classification with Deep Neural Networks)

  • 조휘열;김진화;김경민;장정호;엄재홍;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.322-327
    • /
    • 2017
  • 문서 분류 문제는 오랜 기간 동안 자연어 처리 분야에서 연구되어 왔다. 우리는 기존 컨볼루션 신경망을 이용했던 연구에서 나아가, 순환 신경망에 기반을 둔 문서 분류를 수행하였고 그 결과를 종합하여 제시하려 한다. 컨볼루션 신경망은 단층 컨볼루션 신경망을 사용했으며, 순환 신경망은 가장 성능이 좋다고 알려져 있는 장기-단기 기억 신경망과 회로형 순환 유닛을 활용하였다. 실험 결과, 분류 정확도는 Multinomial Naïve Bayesian Classifier < SVM < LSTM < CNN < GRU의 순서로 나타났다. 따라서 텍스트 문서 분류 문제는 시퀀스를 고려하는 것 보다는 문서의 feature를 추출하여 분류하는 문제에 가깝다는 것을 확인할 수 있었다. 그리고 GRU가 LSTM보다 문서의 feature 추출에 더 적합하다는 것을 알 수 있었으며 적절한 feature와 시퀀스 정보를 함께 활용할 때 가장 성능이 잘 나온다는 것을 확인할 수 있었다.

다능화와 노동생산성 성장 (Multiskilling and Labor Productivity Growth)

  • 김용민;박기성
    • 노동경제논집
    • /
    • 제26권3호
    • /
    • pp.49-75
    • /
    • 2003
  • 본고는 생산현장에서의 인적자본 축적, 즉 근로자의 숙련형성에 영향을 주는 요인들을 실증적으로 찾아보고, 형성된 숙련이 생산성 향상에 기여하고 있는 것을 확인한다. 먼저 숙련형성의 유형은 '단순/견습근로자 < 단능근로자 < 다능근로자'의 직렬적 순서이다. 제품수요의 급변성과 비정상적인 상황 발생이라는 외부적 내부적 불확실성이 클수록 다능화가 활발하게 이루어지고 있으며, 선배 동료 근로자와의 상호학습, 근로자의 의사결정 참여, 직무 순환 등의 인적자원관리 관행들도 다능화를 촉진한다. 이러한 발견들로부터 생산 현장에서의 숙련형성은 다능화로 대표될 수 있다고 판단된다. 기업의 노동생산성 성장률을 기업의 성장률이라고 하면, 불확실성과 인적자원관리 관행들은 다능화를 통해서 기업의 성장에 영향을 준다. 구체적으로 기업의 다능화 비율이 0.1만큼 올라감에 따라 노동생산성 성장률이 0.019만큼 증가한다. 이것은 또한 다능화가 인적자원관리 관행들에 영향을 받아 형성되는 인적자본 축적의 한 결과라는 주장에 대한 근거가 될 수 있다.

  • PDF