• Title/Summary/Keyword: Sequential Search

검색결과 198건 처리시간 0.033초

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • 제23권6호
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

이동물체의 변위 예측을 위한 시간솎음 탐색 방향 알고리즘 (Decimation-in-time Search Direction Algorithm for Displacement Prediction of Moving Object)

  • 임강모;이주신
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.338-347
    • /
    • 2005
  • 본 논문에서는 이동물체의 변위 예측을 위한 시간솎음 탐색 방향 알고리즘 제안하여 고속이동물체의 추적과 속도 측정을 하였다. 제안된 알고리즘은 이동물체의 이동 방향을 예측하기 위하여 초기 방향은 시간적으로 연속하는 과거 두 프레임에서 이동물체를 검출하고 이동 각도와 이동 거리를 구하여 초기화하였다. 현재 프레임에서 이동물체의 이동 방향은 시간솎음 탐색 방향 마스크를 적용하여 이동물체의 이동 방향을 구하였다. 시간솎음 탐색 방향 마스크는 연속 프레임에서 프레임을 시간 솎음하여 이동물체를 검출하고, 이동물체의 진행방향의 예측은 8 방향 중에서 이동물체의 이동 각도를 구하여 탐색 마스크를 결정하고, 탐색 마스크에 의해 이동물체의 이동 방향을 예측하였다. 제안한 알고리즘의 타당성을 입증하기 위하여 고속으로 주행 중인 자동차의 추적과 속도를 측정하고, 성능을 평가하기 위하여 전역탐색기법과 제안된 방법을 비교 평가하였다. 그 결과, 제안된 방법에서는 이동물체 변위 탐색 횟수가 평균 91.8$\%$ 감소하였고, 추적 처리 시간은 평균 32.1ms 임을 보임으로서 이동물체 추적을 실시간적으로 실행할 수 있음을 보였다.

Search Vector Method for Solution Domain Renewal

  • Toriumi, Fujio;Takayama, Jun-ya;Ohyama, Shinji;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.61-64
    • /
    • 2003
  • A band function model paired comparison method (BMPC method) is a kind of a paired comparison methods. Considering the human ambiguities, the BMPC method expressing the human judgment characteristics as a monotonous increase function with some width. Since function types are not specified in a BMPC method, the solution is obtained from inequalities, and the solution is given as a domain. To solve the simultaneous inequalities, the sequential renew method is used in the previous BMPC method. However, the sequential renew method requires much computational effort and memories. Generally, in BMPC method, it is able to solve only a paired comparison table which has less 12-13 samples. For that purpose, a new fast solution algorithm is required. In this paper, we proposed a new “search vector method” which renews the solution domain without creating new edge vectors. By using the method, it is able to decrease the necessary memory spaces and time to solve. The proposed method makes it able to solve more than 15 samples paired comparison inspections which are impossible to solve by previous method.

  • PDF

효율적인 닫힌 빈발 시퀀스 마이닝 (An Efficient Mining for Closed Frequent Sequences)

  • 김형근;황환규
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.163-173
    • /
    • 2005
  • Recent sequential pattern mining algorithms mine all of the frequent sequences satisfying a minimum support threshold in a large database. However, when a frequent sequence becomes very long, such mining will generate an explosive number of frequent sequence, which is prohibitively expensive in time. In this paper, we proposed a novel sequential pattern algorithm using only closed frequent sequences which are small subset of very large frequent sequences. Our algorithm extends the sequence by depth-first search strategy with effective pruning. Using bitmap representation of underlying databases, we can obtain a closed frequent sequence considerably faster than the currently reported methods.

  • PDF

Geometry-Based Sensor Selection for Large Wireless Sensor Networks

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • 제12권1호
    • /
    • pp.8-13
    • /
    • 2014
  • We consider the sensor selection problem in large sensor networks where the goal is to find the best set of sensors that maximizes application objectives. Since sensor selection typically involves a large number of sensors, a low complexity should be maintained for practical applications. We propose a geometry-based sensor selection algorithm that utilizes only the information of sensor locations. In particular, by observing that sensors clustered together tend to have redundant information, we theorize that the redundancy is inversely proportional to the distance between sensors and seek to minimize this redundancy by searching for a set of sensors with the maximum average distance. To further reduce the computational complexity, we perform an iterative sequential search without losing optimality. We apply the proposed algorithm to an acoustic sensor network for source localization, and demonstrate using simulations that the proposed algorithm yields significant improvements in the localization performance with respect to the randomly generated sets of sensors.

병렬처리를 이용한 대규모 동적 시스템의 최적제어 (Optimal Control of Large-Scale Dynamic Systems using Parallel Processing)

  • 박기홍
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.403-410
    • /
    • 1999
  • In this study, a parallel algorithm has been developed that can quickly solve the optiaml control problem of large-scale dynamic systems. The algorithm adopts the sequential quadratic programming methods and achieves domain decomposition-type parallelism in computing sensitivities for search direction computation. A silicon wafer thermal process problem has been solved using the algorithm, and a parallel efficiency of 45% has been achieved with 16 processors. Practical methods have also been investigated in this study as a way to further speed up the computation time.

  • PDF

고성능 순차적 선형화 방법을 이용한 선박 최적 초기설계 기법 -최적화 설계 전용 언어의 개발 및 응용- (Optimum Preliminary Ship Design Technique by Using Sophisticated Sequential Linear Approximation Method -Development and Application of User Oriented Design Optimization Language-)

  • 이규열
    • 대한조선학회지
    • /
    • 제25권3호
    • /
    • pp.35-45
    • /
    • 1988
  • This paper presents a sophisticated Sequential Linear Approximation Method(SLAM) to solve nonlinear optimization problem and the performance of this method is compared with those of the Penalty Function Method(SUMT), Tangent Search Method(TSM) and Flexible Tolerance Method(FTM). To improve the convenience and flexibility in using the proposed SLAM, an user oriented design optimization language is developed and the application examples are shown for the optimization of propeller principal dimensions and the optimization of bulk carrier principal particulars.

  • PDF

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

공공 자전거 정적 재배치에의 VNS 알고리즘 적용 (Application of Variable Neighborhood Search Algorithms to a Static Repositioning Problem in Public Bike-Sharing Systems)

  • 임동순
    • 한국경영과학회지
    • /
    • 제41권1호
    • /
    • pp.41-53
    • /
    • 2016
  • Static repositioning is a well-known and commonly used strategy to maximize customer satisfaction in public bike-sharing systems. Repositioning is performed by trucks at night when no customers are in the system. In models that represent the static repositioning problem, the decision variables are truck routes and the number of bikes to pick up and deliver at each rental station. To simplify the problem, the decision on the number of bikes to pick up and deliver is implicitly included in the truck routes. Two relocation-based local search algorithms (1-relocate and 2-relocate) with the best-accept strategy are incorporated into a variable neighborhood search (VNS) to obtain high-quality solutions for the problem. The performances of the VNS algorithm with the effect of local search algorithms and shaking strength are evaluated with data on Tashu public bike-sharing system operating in Daejeon, Korea. Experiments show that VNS based on the sequential execution of two local search algorithms generates good, reliable solutions.

다중 클래스 데이터를 위한 분류오차 최소화기반 특징추출 기법 (Optimizing Feature Extractioin for Multiclass problems Based on Classification Error)

  • 최의선;이철희
    • 대한전자공학회논문지SP
    • /
    • 제37권2호
    • /
    • pp.39-49
    • /
    • 2000
  • 본 논문에서는 다중 클래스 데이터를 위한 특징 추출 방법을 최적화하는 기법을 제안한다 제안된 특징 추출 기법은 분류 오차에 기반한 방법으로 특징 공간(feature space)을 탐색하여 가우시안 최대우도 분류기 (Gaussian ML Classifier)의 분류오차(classification error)가 최소가 되도록 하는 특징벡터 집합을 구하는 방법이다 제안된 방법은 임의의 초기 특징벡터를 설정한 후 steepest descent 알고리즘을 적용하여 분류오차가 감소하는 방향으로 초기벡터를 갱신시킨다 본 논문에서는 순차탐색 및 전체탐색 두 가지의 방법을 제안하며 순차탐색은 추가로 특징벡터를 구하는 경우 이미 구해진 특징벡터를 포함하여 최소의 분류오차를 얻을 수 있는 특징벡터를 구한다 반면에 전체탐색 방법은 추가의 특징벡터를 구할 경우 새로운 초기 특징벡터 집합을 설정하여 이미 구해진 특징벡터를 포함하는 제약을 받지 않는다. 실험결과 제안된 두 가지 방법은 기존의 특징추출 방법보다 우수한 성능을 보여주고 있다.

  • PDF