• 제목/요약/키워드: Sequential Neural Network

검색결과 108건 처리시간 0.027초

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.

순서정보에 의한 한글자획 온라인 인식을 위한 신경회로망에 관한 연구 (A Study on On-line Recognition of Korean Strokes with Sequential Information Using Neural Network)

  • 김길중;최석;이종혁;남기곤;윤태훈;김재창;박의열;이양성
    • 한국통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.1380-1390
    • /
    • 1992
  • 본 연구에서는 한글자획을 온라인으로 인식하는 다층구조 신경회로망을 제안하였다. 입력되는 자획패턴에 대하여 전자펜의 현재 위치에 $4{\times}4$ 크기의 윈도우를 덧씌워 부분패턴으로 분리하고, 분리된 부분패턴내의 두드러진 특징을 추출한다. 이 특징들은 상층에서 취합되고, 취합된 자획특징은 추출된 특징의 통계적인 분포를 나타내며, 이 자획특징에 의해서 자획이 분류되어 인식된다. 본 연구에서는 처리할 정보량을 줄이고자 자획정보가 집중되어 있는 자획의 첫부분과 끝부분에서 자획특징을 추출하며 '?', '?'과 같은 모서리 특징을 갖는 자획은 첫부분과 끝부분에서 추출되는 자획특징간의 순서정보를 이용하였다. 제안 된 자획인식시스템은 구조가 단순하고, 처리속도의 개선이 기대된다.

  • PDF

Zerinke 모멘트와 신경망을 이용한 온라인 필기체 숫자 인식 (Recognition of Online Handwritten Digit using Zernike Moment and Neural Network)

  • 문원호;최연석;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.205-208
    • /
    • 2010
  • 본 논문에서는 Zernike 모멘트와 backpropagation신경망을 이용한 온라인 필기체 숫자 인식 방법을 소개한다. 마우스로 통해 입력된 숫자 정보는 전처리를 통해 시간에 순서적이고, 연속적인 좌표 정보로 변환된다. 전처리된 입력 좌표는 Zernike 모멘트(moment)와 각도 특징(angulation feature)을 이용하여 각 숫자가 가지는 고유의 특징을 만들어 낸다. 이러한 특징은 크기, 모양, 틀어진 정도에 상관없이 항상 일정한 성질을 가진다. 제안된 방법으로 추출된 특징은 패턴 구분을 위해 back propagation 신경망의 입력으로 사용된다. 본 논문은 200개의 필기체 숫자 데이터베이스를 이용하여 실험을 한 결과, 제시된 방법은 적은 학습데이터만으로 학습이 가능할 뿐만 아니라 좋은 인식률을 보여준다.

  • PDF

Modeling of Recycling Oxic and Anoxic Treatment System for Swine Wastewater Using Neural Networks

  • Park, Jung-Hye;Sohn, Jun-Il;Yang, Hyun-Sook;Chung, Young-Ryun;Lee, Minho;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권5호
    • /
    • pp.355-361
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis(PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids(SS), COD, NH$_4$(sup)+-N, ortho-phosphorus (o-P), and total-phosphorus (T-P). then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of imput. Neural network independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Discernment of Android User Interaction Data Distribution Using Deep Learning

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.143-148
    • /
    • 2022
  • In this paper, we employ deep neural network (DNN) to discern Android user interaction data distribution from artificial data distribution. We utilize real Android user interaction trace dataset collected from [1] to evaluate our DNN design. In particular, we use sequential model with 4 dense hidden layers and 1 dense output layer in TensorFlow and Keras. We also deploy sigmoid activation function for a dense output layer with 1 neuron and ReLU activation function for each dense hidden layer with 32 neurons. Our evaluation shows that our DNN design fulfills high test accuracy of at least 0.9955 and low test loss of at most 0.0116 in all cases of artificial data distributions.

지적보전시스템의 실시간 다중고장진단 기법 개발 (Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System)

  • 배용환
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

정리정돈을 위한 Q-learning 기반의 작업계획기 (Tidy-up Task Planner based on Q-learning)

  • 양민규;안국현;송재복
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.56-63
    • /
    • 2021
  • As the use of robots in service area increases, research has been conducted to replace human tasks in daily life with robots. Among them, this study focuses on the tidy-up task on a desk using a robot arm. The order in which tidy-up motions are carried out has a great impact on the success rate of the task. Therefore, in this study, a neural network-based method for determining the priority of the tidy-up motions from the input image is proposed. Reinforcement learning, which shows good performance in the sequential decision-making process, is used to train such a task planner. The training process is conducted in a virtual tidy-up environment that is configured the same as the actual tidy-up environment. To transfer the learning results in the virtual environment to the actual environment, the input image is preprocessed into a segmented image. In addition, the use of a neural network that excludes unnecessary tidy-up motions from the priority during the tidy-up operation increases the success rate of the task planner. Experiments were conducted in the real world to verify the proposed task planning method.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

수신된 전파신호의 자동 변조 인식을 위한 딥러닝 방법론 (A deep learning method for the automatic modulation recognition of received radio signals)

  • 김한진;김혁진;제준호;김경섭
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1275-1281
    • /
    • 2019
  • 무선 신호의 자동 변조 인식은 지능형 수신기의 주요한 작업으로 다양한 민간 및 군대 응용분야가 있다. 본 논문에서는 딥 뉴럴 네트워크 모델을 기반한 무선통신에서 전파신호의 변조 방식을 식별하는 방법을 제안한다. 순차적인 데이터에 대해 장기적인 패턴을 잡아내는데 용이한 LSTM 모델을 통과하여 얻은 연속적인 신호의 특징값을 딥 뉴럴 네트워크의 입력 데이터로 사용하여 신호의 변조 패턴을 분류한다. 변조된 신호의 진폭 및 위상, 동상(In-phase) 반송파, 직각 위상(Quadrature-phase) 반송파의 값을 LSTM 모델의 입력 데이터로 사용하여 분류한다. 제안된 학습 방법의 성능을 검증하기 위해, 다양한 신호 대 잡음비로 10 가지 유형의 변조 신호를 포함하는 대형 데이터 세트를 사용하여 학습하고 테스트한다. 본 논문의 변조 인식 프로그램은 신호의 사전 정보가 없는 환경에서 변조방식을 예측하는데 적용될 수 있다.

계단형 불연속 함수의 근사화를 위한 새로운 모듈형 신경회로망 학습 알고리즘 (A new modular neural network training algorithm for step-like discontinuous function approximation)

  • 이혁준
    • 한국통신학회논문지
    • /
    • 제22권12호
    • /
    • pp.2613-2625
    • /
    • 1997
  • Theoretically, a multi-layered feedforward network has been known to be able to approximate a continuous function to an arbitrary degree of accuracy. However, these networks fail to approximate discontinuous functions when they are trained by well-known training algorithms. This paper presents a training algorithm which doesn't work consists of one or more modules, which are trained in a sequential order within subspaces of the input space, and is trained very rapidely once all modules are trained and merged. The experimantal results of applying this method indicates the proposed training algorithm is superior to traditional ones such as baskpagation.

  • PDF