• 제목/요약/키워드: Sequential Injection

검색결과 86건 처리시간 0.025초

가솔린 엔진의 연료분사시기가 희박가연한계에 미치는 영향에 관한 연구 (Effects of Injection Timing on the Lean Misfire Limit in a SI Engine)

  • 엄인용;정경석;정인석
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.97-103
    • /
    • 1997
  • Effects of fuel injection timing on the lean misfire limit of a sequential MPI SI engine has been investigated. To investigate the interaction of injection timing and intake flow characteristics, so called axial stratification phenomena, 4 kinds of different intake swirl port of the same combustion chamber geometry have been teated in a single cylinder engine test bench. And 2 kinds of fuel, gasoline and compressed natural gas(CNG), were used to see the effect of liquid fuel vaporization. Result shows that combination of port swirl and injection timing governs the lean misfire limit and lean misfire limit envelopes remain almost the same for a given ratio regardless of engine speed. It is also found that two phase flow has some effects on lean misfire limit.

  • PDF

Optimization of filling process in RTM using genetic algorithm

  • Kim, Byoung-Yoon;Nam, Gi-Joon;Ryu, Ho-Sok;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제12권1호
    • /
    • pp.83-92
    • /
    • 2000
  • In resin transfer molding (RTM) process, preplaced fiber mat is set up in a mold and thermoset resin is injected into the mold. An important interest in RTM process is to minimize cycle time without sacrificing part quality or increasing cost. In this study, the numerical simulation and optimization process in filling stage were conducted in order to determine the optimum gate locations. Control volume finite element method (CVFEM) was used in this numerical analysis with the coordinate transformation method to analyze the complex 3-dimensional structure. Experiments were performed to monitor the flow front to validate simulation results. The results of numerical simulation predicted well the experimental results with every single, simultaneous and sequential injection procedure. We performed the optimization analysis for the sequential injection procedure to minimize fill time. The complex geometry of an automobile bumper core was chosen. Genetic algorithm was used in order to determine the optimum gate locations with regard to 3-step sequential injection case. These results could provide the information of the optimum gate locations in each injection step and could predict fill time and flow front.

  • PDF

가솔린기관의 연료분사 시기가 기관성능에 미치는 영향 (Effect of Fuel Injection Timing on the Performance Characteristics in an Si Engine)

  • 조규상;정연종;김원배
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.144-152
    • /
    • 1996
  • In the sequential MPI system with one injection for each cycle, engine performance is influenced by the mixture conditions. It can be said that engine performance is improved by being better identical mixture formation conditions for all cylinders. As the fuel injection timing to the intake port effects on the mixture formation conditions and the engine performance, injection timing must be better adjusted to engine requirements. Engine behavior was clearly different depending on the injection time during intake storke. Therefore it was studied that injection timing of fuel effects on the engine performance I. e. combustion stability, COV(imep), A/F excursion, CO,HC emission concentration and fuel consumption. It was found that late intake-synchronous injection was deteriorated the combustion characteristics and performance characteristics, while early intake-synchronous infection resulted in favorable engine behavior.

  • PDF

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

수치적 노이즈가 존재하는 사출 성형품 휨의 최적설계 (Design Optimization for Minimizing Warpage in Injection Molding Parts with Numerical Noise)

  • 박창현;김성룡;최동훈;표병기
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1445-1454
    • /
    • 2005
  • In order to minimize warping deformation which is an essential factor in the failure of injection molding parts, this study proposes an optimization design method fer determining design variables of injection molding parts. First, using a commercial package program for injection molding analysis, namely, Computer Aided Plastics Application(CAPA), we investigate the effects of parameters of injection molding process. Next, an optimum design process is established by interfacing CAPA to PQRSM embedded in EMD10S, a design framework developed by the conte. of innovative Design Optimization Technology(iDOT). PQRSM is a very efficient sequential approximate optimization algorithm. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the results of the optimum design is better than those of the initial design. It is believed that the proposed methodology can be applied to other injection molding design applications.

전자제어의 Event 처리방법에 관한 연구 (A Study on the Event Processing for Electronic Control)

  • 이종승;이중순;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.115-122
    • /
    • 1998
  • For digital engine control timings, such as ignition, are based on the crank shaft angle. Therefore, it is very important that the angle of the crank shaft can be detected with accuracy for optimal ignition timing. Sequential multi-point injection(MPI) systems that have independent injection events for each cylinder, are used to inject an accurate quantity of fuel, and to cope with varying engine status promptly. In this study the distributorless ignition timing. A crankshaft position sensor has been installed such that it generates a number of pulses per crankshaft revolution to permit accurate detection of the crank shaft angle. An event detecting algorithm has been developed, which detects the crank shaft pulses generated by the position sensor, and the software outputs the required control signals at given crank angle values. We clarified that the hardware method is the best way to increase the performance of the control system, because the event detecting duration T(1+2)max becomes zero.

  • PDF

근사 최적화 방법을 이용한 사출금형 설계에 관한 연구 (A Study on Injection Mold Design Using Approximation Optimization)

  • 변성광;최하영
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.55-60
    • /
    • 2020
  • The injection molding technique is a processing method widely used for the production of plastic parts. In this study, the gate position, gate size, packing time, and melt temperature were optimized to minimize both the stress and deformation that occur during the injection molding process of medical suction device components. We used a central composite design and Latin hypercube sampling to acquire the data and adopted the response surface method as an approximation method. The efficiency of the optimization of the injection molding problem was determined by comparing the results of a genetic algorithm, sequential quadratic programming, and a non-dominant classification genetic algorithm.

LPG 가스분사시스템의 기초특성에 대한 실험적 연구 (An Experimental Study on the Fundamental Characteristics of LPG Gas Injections System)

  • 장열성;우성동;김형식;박찬준;엄인용
    • 에너지공학
    • /
    • 제15권4호
    • /
    • pp.277-283
    • /
    • 2006
  • 본 연구에서는 온도 변화에 따른 실제 연료에서의 증기압 변화를 관찰하기 위하여 부탄 100%를 사용하였다. 연료공급방식은 V-6 엔진의 다점분사시스템과 동일하며 연료의 액상 가능성을 최소화하기 위하여 연료레일은 'L' 형상으로 설계하였고, 순차분사시스템을 사용하여 한 열로 작동되도록 하였다. 분사유량은 분사시간, 엔진속도, 연료공급압력에 따라서 측정되었다 또한 액상으로 분사되는 것을 방지하기 위하여 베이퍼라이져와 연료레일 온도를 변화시켜 가며 실험하였다. 그 결과 연료분사의 기본적인 특징으로 공기와 LPG분사의 상대적인 차이를 확인하였다. 하지만 냉 시동 하에서는 압력이 조금만 증가하여도 액상분사가 발생하였고, 베이퍼라이져와 연료레일 사이에서의 충분히 높은 온도가 가스분사를 하는데 매우 중요한 인자임을 확인하였다. 또한, 베이퍼라이져의 온도는 LPG를 기상으로 유지하는데 보다 중요한 역할을 했고, 연료레일의 'L' 형상은 액상분사의 억제에 기여를 하였다.

COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구 (Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes)

  • 장찬희;김현나;소병달
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.643-659
    • /
    • 2022
  • 최근 지중저장기술(예, 온실가스 심지층 처분, 인공지열저류층 발전 등)이 활발히 수행됨에 따라, 유체 주입과 저장부지 안정성 사이의 역학적 관계에 관한 정량적 이해의 중요성이 인지되고 있다. 지중 유체 주입은 공극압 및 지중응력 교란과 지층의 역학적 불안정성을 야기할 수 있어, 유체 주입에 대한 다공탄성 수치 모형 구축이 요구된다. 본 연구에서는 순차적인 COMSOL-PyLith-COMSOL 유체 주입-유발지진 다공탄성 수치 모사를 수행한다. 유한요소 상용 소프트웨어인 COMSOL을 이용해 단층에 가해지는 쿨롱 파괴 응력(CFS) 변화를 시간에 따라 추적하였고, CFS 변화량이 임계값(예, 0.1 MPa)을 초과할 경우, 모형의 정보(기하구조, 물성 등)를 유한요소 오픈소스 코드인 PyLith로 이동시키는 알고리즘을 구축했다. PyLith는 단층의 미끄러짐을 모사하고, 미끌림에 의한 변위장을 획득한다. 이후 변위장을 COMSOL로 이동시켜 지진에 의한 응력 및 표면 변위를 계산한다. 수치 모사 결과, 주입 기간 중엔 주입정 근거리에서 큰 변화(공극압, CFS 변화 등)를 보였고, 주입 종류 후에는 잔류 응력이 원거리 영역으로 확산하는 양상이 나타났다. 이는 주입 종료 후 지속적인 모니터링의 필요성을 제안한다. 또한, 단층과 주입층 물성(예, 투수계수, Biot-Willis 계수)에 따른 CFS 변화량 비교는 주입정 위치 선정 시 주입층 및 주변 지층에 대한 물성 파악이 중요함을 의미한다. 단층 미끄러짐 양에 따른 표면 변위 및 이암층에 가해지는 편차응력은 다양한 단층 미끌림 시나리오 설정의 필요성을 지시한다.

캐비티 온도센서를 이용한 최적 사출공정 제어 (Optimal Control of Injection Molding Process by Using temperature Sensor)

  • 박천수;강철민
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.30-33
    • /
    • 2008
  • Injection Molding is the most effective process for mass production of plastic parts. The injection molding process is composed with several steps such as Filling, Packing, Holding, Cooling, Ejecting. Among them, filling and packing process should be considered carefully to improve accuracy of dimension, surface quality of plastic parts. Usually the quality above-mentioned is managed with weight of part after molding on the field. In this paper, a series of experiment for molding automotive front bumper was conducted with cavitity temperature sensor to optimize switch-over time(V-P switching), hot runner vale gate sequence time during filling and packing step for the purpose of uniform quality, weight at every molding. As a result, it was found that it is effective method to use temperature sensor in injection molding for quality control of plastic molding.

  • PDF