• 제목/요약/키워드: Sequential Gradient Method

검색결과 39건 처리시간 0.027초

Solving a Nonlinear Inverse Convection Problem Using the Sequential Gradient Method

  • Lee, Woo-Il;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.710-719
    • /
    • 2002
  • This study investigates a nonlinear inverse convection problem for a laminar-forced convective flow between two parallel plates. The upper plate is exposed to unknown heat flux while the lower plate is insulated. The unknown heat flux is determined using temperature measured on the lower plate. The thermophysical properties of the fluid are temperature dependent, which renders the problem nonlinear. The sequential gradient method is applied to this nonlinear inverse problem in order to solve the problem efficiently. The function specification method is incorporated to stabilize the sequential estimation. The corresponding adjoint formalism is provided. Accuracy and stability have been examined for the proposed method with test cases. The tendency of deterministic error is investigated for several parameters. Stable solutions are achieved eve]1 with severely impaired measurement data.

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.

경사형 구조 적층복합재료의 최적설계에 관한 연구 (Optimal Design of Laminate Composites with Gradient Structure)

  • 백성기;강태진;이경우
    • Composites Research
    • /
    • 제13권2호
    • /
    • pp.40-50
    • /
    • 2000
  • 종횡비가 다른 적층복합재료에 경사형 구조를 도입하고, 이것이 일방향으로의 하중을 받을 때의 좌굴특성을 최대화하기 위해서 복합재료의 각 층에서의 섬유부피분율과 두께를 변수로 sequential linear programming method를 이용하여 최적화 하였다. 이로부터 좌굴특성을 최대화 할 수 있는 최적구조를 제안하였다. 적층복합재료는 종횡비의 영향이 커서 종횡비가 1보다 작은 경우는 최외각층의 섬유부피분율을 최대화하는 방향으로 최적화가 이루어졌으나 종횡비가 2인 경우는 각층에서의 섬유부피분율과 두께비가 어느 정도 균형을 이루는 형태로 최적화가 이루어 졌다. 경사형 구조는 전통적인 균일구조의 복합재료에 비해서 섬유부피와 복합재료의 무게 절감에 큰 효과를 가지는 것으로 확인되었다.

  • PDF

분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구 (A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION USING DISTRIBUTED COMPUTATION)

  • 김양준;정현주;김태승;조창열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.163-167
    • /
    • 2005
  • A research to evaluate efficiency of design optimization was performed for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition rather than a simultaneous distributed-analyses process using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoil and to evaluate their efficiencies. One dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in distributed computing environment. The SAO was found quite suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the fittest for distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model are annoying and time-consuming so that they often impair the automatic capability of design optimization and also deteriorate efficiency from the practical point of view.

  • PDF

분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구 (A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION IN DISTRIBUTED COMPUTING ENVIRONMENT)

  • 김양준;정현주;김태승;손창호;조창열
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.19-24
    • /
    • 2006
  • A research to evaluate the efficiency of design optimization was carried out for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition in a single analysis rather than a simultaneous distributed-analyses using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoils and evaluate their efficiencies. dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in the present distributed computing system. The SAO was found fairly suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the most efficient algorithm in the present distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model deteriorate its efficiency from the practical point of view.

색상 및 기울기 정보를 이용한 인간 실루엣 추출 (Hybrid Silhouette Extraction Using Color and Gradient Informations)

  • 주영훈;소제윤
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.913-918
    • /
    • 2007
  • 본 논문에서는 인간과 로봇의 인터액션을 위해 연속된 이미지 정보로부터 얻을 수 있는 색상(color)과 기울기(gradient) 정보를 이용하여 인간 몸의 실루엣 추출 기법을 제안한다. 연속된 이미지 정보로부터 얻어진 RGB 영상 정보에서 색상 배경 제거 기법은 각각의 신체 비율 정보로부터 추출된 모션 영역 정보에서 색상 공판별 평균 이미지 정보를 얻고 옷 색상 정보를 볼록 합하여 계산된다. 기울기 배경 제거 기법은 공간상 정보와 시간상 정보의 볼록 합으로 계산된다. 최종적으로 색상 정보와 기울기 정보의 볼록 합을 하여 인간 몸의 실루엣을 추출한다. 마지막으로, 실험을 통하여 제안된 기법의 성능을 확인하였다.

순차적 근사최적화 기법을 이용한 방열판 최적설계 (Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm)

  • 박경우;최동훈
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1156-1166
    • /
    • 2004
  • The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).

Optimal Design of Laminate Composites with Gradient Structure for Weight Reduction

  • Back, Sung-Ki;Kang, Tae-Jin;Lee, Kyung-Woo
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.68-72
    • /
    • 1999
  • In an effort to construct a structure under the design principle of minimal use of materials for maximum performances, a discrete gradient structure has been introduced in laminate composite systems. Using a sequential linear programming method, the gradient structure of composites to maximize the buckling load was optimized in terms of fiber volume fraction and thickness of each layer. Theoretical optimization results were then verified with experimental ones. The buckling load of laminate composite showed maximum value with the outmost [$0^{\circ}$] layer concentrated by almost all the fibers when the ratio of length to width(aspect ratio) was less than 1.0. But when the aspect ratio was 2.0, the optimum was determined in a structure where the thickness and fiber volume fraction were well balanced in each layer. From the optimization of gradient structure, the optimal fiber volume fraction and thickness of each layer were proposed. Experimental results agreed well with the theoretical ones. Gradient structures have also shown an advantage in the weight reduction of composites compared with the conventional homogeneous structures.

  • PDF

얼굴 특징영역상의 광류를 이용한 표정 인식 (Recognition of Hmm Facial Expressions using Optical Flow of Feature Regions)

  • 이미애;박기수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권6호
    • /
    • pp.570-579
    • /
    • 2005
  • 표정인식 연구는 맨$\cdot$머신 인터페이스 개발, 개인 식별, 가상모델에 의한 표정복원 등 응용가치의 무한한 가능성과 함께 다양한 분야에서 연구되고 있다 본 논문에서는 인간의 기본정서 중 행복, 분노, 놀람, 슬픔에 대한 4가지 표정을 얼굴의 강체 움직임이 없는 얼굴동영상으로부터 간단히 표정인식 할 수 있는 방법을 제안한다. 먼저, 얼굴 및 표정을 결정하는 요소들과 각 요소의 특징영역들을 색상, 크기 그리고 위치정보를 이용하여 자동으로 검출한다. 다음으로 Gradient Method를 이용하여 추정한 광류 값으로 특징영역들에 대한 방향패턴을 결정한 후, 본 연구가 제안한 방향모델을 이용하여 방향패턴에 대한 매칭을 행한다. 각 정서를 대표하는 방향모델과의 패턴 매칭에서 그 조합 값이 최소를 나타내는 부분이 가장 유사한 정서임을 판단하고 표정인식을 행한다. 마지막으로 실험을 통하여 본 논문의 유효성을 확인한다.

송풍기 설계를 위한 수치최적설계기법의 응용 (Application of Numerical Optimization Technique to the Design of Fans)

  • 김광용;최재호;김태진;류호선
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.566-576
    • /
    • 1995
  • A Computational code has been developed in order to design axial fans by the numerical optimization techniques incorporated with flow analysis code solving three-dimensional Navier-Stokes equation. The steepest descent method and the conjugate gradient method are used to look for the search direction in the design space, and the golden section method is used for one-dimensional search. To solve the constrained optimization problem, sequential unconstrained minimization technique, SUMT, is used with imposed quadratic extended interior penalty functions. In the optimization of two-dimensional cascade design, the ratio of drag coefficient to lift coefficient is minimized by the design variables such as maximum thickness, maximum ordinate of camber and chord wise position of maximum ordinate. In the application of this numerical optimization technique to the design of an axial fan, the efficiency is maximized by the design variables related to the sweep angle distributed by quadratic function along the hub to tip of fan.

  • PDF