• Title/Summary/Keyword: Sequencing Batch Reactor

Search Result 224, Processing Time 0.027 seconds

A Comparative Study on the Morphological Characteristics of PAO and dPAO Granule (PAO와 dPAO 입상슬러지의 형태학적 특성에 대한 비교 고찰)

  • Yun, Geumhee;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.302-310
    • /
    • 2017
  • The morphological characteristics of granules developing in anaerobic-anoxic (An-Ax) and anaerobic-aerobic (An-Ox) sequencing batch reactors (SBRs) were examined. The granules developed in the both SBRs after 200 days of laboratory operation. The average diameters of the granules were $2.2{\pm}1.7mm$ in the An-Ax SBR and $0.4{\pm}0.3mm$ in the An-Ox SBR. To determine the possible factors affecting morphology of granules a comparative analysis of various operating conditions from reference data indicated that the availability and type of electron acceptors is a key factor determining the granulation process and granular morphology.

Assessment of Degradation Rate Coefficient and Temperature Correction Factor by Seasonal Variation of Concentration and Temperature in Livestock Wastewater Treatment in Field Scale (현장수준의 축산폐수처리에 있어서 계절별 농도 및 온도변화에 따른 분해반응계수 및 온도보정계수의 산정)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • This study was performed to calculate the degration rate coefficient, operating parameters to meet the effluent standards, and the temperature adjustment coefficients to each parameter of pollution by seasonal variation of concentration and temperature of influent in livestock wastewater treatment by sequencing batch reactor process in field scale. The followings are the conclusions that were derived from this study. 1. In the field, temperature of livestock wastewater in reactor was 20.3$\circ$C in summer and 6.0$\circ$C in winter. The ratio of BOD:TKN: T-P in influent was 100:80:7. BOD loadings in winter and spring were 0.26 and 0.43 kg $BOD/m^3$ day, respectively. Those in summer and fall were 0.25 and 0.13 kg $BOD/m^3$ day, respectively. 2. The degradation rate coefficient for TKN was larger in summer and fall in which temperature was high than that in which temperature was high than that in winter and spring in which concentration was high. On the contrary, the phosphorus uptake rate was larger in winter and spring than that in summer and fall. 3. The hydraulic retention time in winter and spring was longer than that in summer and fall. Especially, in order to meet the standard for TKN of 120 mg/l in winter in which temperature of wastewater was 6.0$\circ$C, as the MLSS concentration was increased from 4, 000 to 7, 000 mg/l, the hydraulic retention time was increased from 212 to 121 hours. But, in order to shorten that less than 121 hours for the economical wastewater treatment, countermeasure to increase temperature of wastewater in the reactor should be considered. 4. the temperature adjustment coefficients for BOD, $COD_{Mn}$, TKN and T-P were 1.0241, 1.0225, 1.0541 and 1.0495, respectively. Namely, the treatment of TKN was most sensitively affected by temperature. For the purpose of the effective removal of nitrogen and phosphorus which are sensitive to temperature, it is necessary to keep the temperature of livestock wastewater more than 20$\circ$C which is the temperature of it in summer.

  • PDF

Production of Bioplastics from Activated Sludge in a Mixed Culture (혼합배양계에서 활성오니를 이용한 생분해성플라스틱 생산 연구)

  • Cho, Jae-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.119-126
    • /
    • 2001
  • A process for the production of bioplastics from wastewater with an open microbial culture was developed and evaluated. The process consists of a selection reactor to select bacteria in feast/famine regime and an accumulation reactor to produce PHA using selected bacteria. Polyhydroxyalkanoate(PHAs) accumulating bacteria could be efficiently grown in a sequencing batch reactor(SBR) without any growth limitation. For the high production of PHA limitation such as oxygen and nutrients seemed to be needed. Accumulation experiments were performed to evaluate the level of accumulation of PHA. Limited aeration had no effect, but nutrients limitation showed high accumulation. Bacteria which were selected in the SBR could accumulate PHA till 60% of cellular dry weight in accumulation experiments under nitrogen limitation. PHA accumulation rate decreased with increasing PHA content in the cells. Clearly, PHA accumulation rate has a strong correlation with the PHA content of the cells.

  • PDF

The effectiveness of step feeding strategies in sequencing batch reactor for a single-stage deammonification of high strength ammonia wastewater

  • Choi, Wonyoung;Yu, Jaecheul;Kim, Jeongmi;Jeong, Soyeon;Direstiyani, Lucky Caesar;Lee, Taeho
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • A single-stage deammonification with a sequencing batch reactor (SBR) that simultaneous nitritation, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) occur in one reactor has been widely applied for sidestream of wastewater treatment plant. For the stable and well-balanced SNAD, a feeding strategy of influent wastewater is one of the most important operating factors in the single-stage deammonification SBR. In this study, single-stage deammonification SBR (working volume 30L) was operated to treat a high-strength ammonium wastewater (1200 mg NH4+-N/L) with different feeding strategies (single feeding and nine-step feeding) under the condition without COD. Each cycle of the step feeding involved 6 sub-cycles consisted of aerobic and anoxic periods for partial nitritation (PN) and anammox, respectively. Contrary to unstable performance in the single feeding, the step feeding showed better deammonification performance (0.565 kg-N/m3/day). Under the condition with COD, however, the nitrogen removal rate (NRR) decreased to 0.403 kg-N/m3/day when the Nine-step feeding strategies had an additional denitrification period before sub-cycles for PN and anammox. The NRR was recovered to 0.518 kg-N/m3/day by introducing an enhanced multiple-step feeding strategy. The strategy had 50 cycles consisted of feed, denitrification, PN, and anammox, instead of repeated sub-cycles for PN and anammox. The multiple-step feeding strategy without sub-cycle showed the most stable and excellent deammonification performance: high nitrogen removal efficiency (98.6%), COD removal rate (0.131 kg-COD/m3/day), and COD removal efficiency (78.8%). This seemed to be caused by that the elimination of the sub-cycles might reduce COD oxidation during aerobic condition but increase the COD utilization for denitrification period. In addition, among various sensor values, the ORP pattern appeared to be applicable to monitor and control each reaction step for deammonification in the multiple-step feeding strategy without sub-cycle. Further study to optimize the number of multiple-step feeding is still needed but these results show that the multiple-step feeding strategy can contribute to a well-balanced SNAD for deammonification when treating high-strength ammonium wastewater with COD in the single-stage deammonification SBR.

The Study of Modified Sequencing Batch Reactor Process for Small Advanced Wastewater Treatment (소규모 고도하수처리를 위한 변형 연속회분식공정에 관한 연구)

  • Han, Woonwoo;Kim, Kyuhyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • This study was carried out to estimate the performance of modified sequencing batch reactor (SBR) process by the application of SBR process for small advanced wastewater treatment plant. Organic, nitrogen and phosphorus were able to remove in the unit reactor by SBR process and it would be able to select the suitable operation method. The plant was operated to achieve high performance with influent control, optimum anoxic/oxic condition using intermediate aeration method, and solid (sludge) /liquid (effluent) separation by modified decanter. The optimum operating mode was 3Cycles a day and intermediate input and aeration. Under these conditions, the treatment efficiencies were good with 60% of designed flow rate and low influent quality. When the influent concentrations of BOD and CODMn were 120.4 mg/L and 95.7 mg/L, respectively. The effluent concentrations of BOD and CODMn were 6.8 mg/L and 11.0 mg/L, respectively. The average removal efficiencies of BOD and CODMn were 94.4% and 88.5%, respectively. The removal efficiencies of T-N and T-P were 69.6% and 73.6%, respectively when the average T-N and T-P concentrations were 32.2mg/L and 4.65mg/L, respectively. The T-N and T-P removal efficiencies were slightly decreased to 58.8% and 68.5%, respectively in the winter season but its were also stable efficiencies. BOD, T-N and T-P were removed by 90%. 67% and 46% respectively in the first anoxic/oxic condition, in addition to T-P was removed by 70% in the second anoxic/oxic condition. From the results, modified sequencing batch reactor (SBR) process is suitable for small advanced wastewater treatment.

  • PDF

Sidestream Deammonification (반류수탈암모니아 공정)

  • Park, Younghyun;Kim, Jeongmi;Choi, Wonyoung;Yu, Jaecheul;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.109-120
    • /
    • 2018
  • Sidestream in domestic wastewater treatment plants contains high concentration of ammonium, which increases nitrogen loading rate in the mainstream. The process for deammonification consisting of partial nitritation-anaerobic ammonium oxidation (ANAMMOX) and heterotrophic denitrification is an economical method of solving this problem. Currently, about 130 full-scale deammonification plants are fully operating around the world, but none is in Korea. In order to transfer the principal information about sidestream deammonification processes to researchers and operators, we summarized basic concepts, processes type, and key influence factors (e.g., concentration of nitrogen compounds, dissolved oxygen (DO), temperature, and pH). This review emphasis on the processes of single-stage sequencing batch reactor (SBR) deammonification, which are widely used as full-scale plants. Since simultaneous processes of partial nitritation, ANAMMOX and heterotrophic denitrification occur in a single reactor, the single-stage SBR deammonification requires appropriate control/monitoring strategies for several operating factors (DO and pH mostly) to achieve efficient and stable operation. In future, AB-process consisting of A-stage (energy harvesting from organics) and B-stage (ammonium removal without organics) will be applied to the wastewater treatment process. Thus, we suggest mainstream deammonification for B-stage connected with the sidestream deammonification as seeding source of ANAMMOX. We expect that many researchers will become more interested in the sidestream deammonification.

Operational Characteristics of the Anaerobic Sequencing Batch Reactor Process at a Thermophilic Temperature (연속 회분식 고온 혐기성 공정의 운전특성 연구)

  • Lee, Jong Hoon;Chung, Tai Hak;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1997
  • An attempt was made to enhance anaerobic treatment efficiency by adopting the anaerobic sequencing batch reactor(ASBR) process at a thermophilic temperature. Operational characteristics of the ASBR process were studied using laboratory scale reactors and concentrated organic wastewater composed of soluble starch and essential nutrients. Effects of fill to react ratio (F/R) were examined in the Phase I experiment, where the equivalent hydraulic retention time(HRT) was maintained at 5 days with the influent COD of 10g/L. A continuous stirred tank reactor(CSTR) was operated in parallel as a reference. Treatment efficiency was higher for the ASBRs because of continuous accumulation of volatile suspended solids(VSS) compared to the CSTR. However, the rate of gas production and organic removal per unit VSS in the ASBRs was much lower than the CSTR. This was caused by reduced methane fermentation due to accumulation of volatile acids(VA), especially for the case of low F/R, during the fill period. When the F/R was high, maximum VA was low and the VA decreased in short period. Consequently, more stable operation was possible with higher F/R. Effects of hydraulic loading rate on the efficiency was studied in the Phase II experiment, where the organic loading rate was elevated to 3333mg/L-d with the F/R of 0.12. Reduction of organic removal along with rapid increase of VA was observed and the stability of reaction was seriously impaired, when the influent COD was doubled. However, operation of the ASBR was quite stable, when the hydraulic loading rate was doubled and a cycle time was adjusted to 12 hour. It is essential to avoid rapid accumulation of VA during the fill period in order to maintain operational stability of the ASBR.

  • PDF

Filtration Performance in MSBR (Membrane-Coupled Sequencing Batch Reactor) using a Membrane for Both Filtration and Aeration (막결합형 연속회분식 생물반응조에서 여과 및 공기공급용으로 분리막을 사용할 때 공기공급이 막여과 성능에 미치는 영향)

  • Ryu, Kwan-Young;Park, Pyung-Kyu;Lee, Chung-Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.337-346
    • /
    • 2005
  • An MSBR using a membrane for not only filtration but also aeration (MA-MSBR) was designed to reduce membrane fouling and to enhance water quality, and compared with an MSBR using a membrane for only filtration (BA-MSBR). COD removal efficiency of the MA-MSBR was similar to that of the BA-MSBR, but membrane performance of the MA-MSBR was better than that of the BA-MSBR. The MA-MSBR had more small particles in mixed liquor, so the specific cake resistance of flocs in the MA-MSBR was higher than that in the BA-MSBR. However, in the aerobic reaction step of the MA-MSBR, air went through membrane pores and out of the membrane surface, so cake layers on the membrane surface and a portion of organics adsorbed on membrane pores could be removed periodically. Therefore, cake resistance, $R_c$, and fouling resistance by adsorption and blocking, $R_f$, for the MA-MSBR increased more slowly than those for the BA-MSBR. Additionally, in order to compare the energy efficiency for two MSBRs, oxygen transfer efficiency and power to supply air into the reactor by a membrane module and a bubble stone diffuser were measured using deionized water. From these measurements, the transferred oxygen amount per unit energy was calculated, resulting that of MA-MSBR was slightly higher than that of BA-MSBR.

Development of a Diagnosis Algorithm of Influent Loading Levels Using Pattern Matching Method in Sequencing Batch Reactor (SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 유입수 부하수준 진단 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Kim, Hyo-Su;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • DO, ORP and pH values measured during SBR operation can provide information about removal reaction of organic contaminants and nutrient materials in the reactor. It is already generalized control strategy to control reaction phase time using their special patterns indicating the end of the removal reactions. However, those informations are limited to point out the end time of oxidative reaction in the aerobic phase or reductive reaction in the anoxic phase without giving quantitative value of influent loading level. In this research, a diagnosis algorithm which can estimate the loading level of carbon and ammonia as high, medium and low was developed using the basic measurements like DO, ORP, and pH. It will be possible to know the level of influent loading rate from those online measurements without experimental analysis.

An aerobic granular sludge process for treating low carbon/nitrogen ratio sewage

  • Yae, JaeBin;Ryu, JaeHoon;Tuyen, Nguyen Van;Kim, HyunGu;Hong, SeongWan;Ahn, DaeHee
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.238-245
    • /
    • 2019
  • This study investigated the characteristic of aerobic granular sludge (AGS) process to treat the sewage having low carbon/nitrogen ratio (Biochemical oxygen demand ($BOD_5$):Total nitrogen (T-N), 4.5:1) in sequencing batch reactor (SBR). The removal efficiency of $BOD_5$, suspended solid (SS), T-N and phosphorus ($PO_4{^{3-}}$-P) were 92.6%, 64.3% and 90.1%. Concentration and size of AGS were changed in proportion to the organic matters and nitrogen concentration of the influent (Concentration and size of AGS: 1,700-3,000 mg/L, 0.5-1.0 mm). Mixed liquor suspended solid (MLSS) also changed with the concentration of AGS (MLSS: 2,000-3,500 mg/L). When the settling time was shortened from 15 min to 10 min, size and shape of AGS were maintained (Size of AGS: 1.0-1.5 mm). In addition, the concentration of AGS and MLSS increased (Concentration of AGS: 3,500 mg/L, MLSS: 4,000 mg/L). Concentration, size and shape of AGS were affected the settling time of the reactor more than the concentration of organic matter and nitrogen in the influent. In the results of removal efficiency and changes in AGS, we confirmed that the SBR process using AGS can be used to treat the sewage having low carbon/nitrogen ratio by applying short settling time.