• Title/Summary/Keyword: Sequence Analyses

Search Result 938, Processing Time 0.033 seconds

Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens

  • Kong, H.R.;Anthony, N.B.;Rowland, K.C.;Khatri, B.;Kong, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • Objective: Meat quality including muscle color in chickens is an important trait and continuous selective pressures for fast growth and high yield have negatively impacted this trait. This study was conducted to investigate genetic variations responsible for regulating muscle color. Methods: Whole genome re-sequencing analysis using Illumina HiSeq paired end read method was performed with pooled DNA samples isolated from two broiler chicken lines divergently selected for muscle color (high muscle color [HMC] and low muscle color [LMC]) along with their random bred control line (RAN). Sequencing read data was aligned to the chicken reference genome sequence for Red Jungle Fowl (Galgal4) using reference based genome alignment with NGen program of the Lasergene software package. The potential causal single nucleotide polymorphisms (SNPs) showing non-synonymous changes in coding DNA sequence regions were chosen in each line. Bioinformatic analyses to interpret functions of genes retaining SNPs were performed using the ingenuity pathways analysis (IPA). Results: Millions of SNPs were identified and totally 2,884 SNPs (1,307 for HMC and 1,577 for LMC) showing >75% SNP rates could induce non-synonymous mutations in amino acid sequences. Of those, SNPs showing over 10 read depths yielded 15 more reliable SNPs including 1 for HMC and 14 for LMC. The IPA analyses suggested that meat color in chickens appeared to be associated with chromosomal DNA stability, the functions of ubiquitylation (UBC) and quality and quantity of various subtypes of collagens. Conclusion: In this study, various potential genetic markers showing amino acid changes were identified in differential meat color lines, that can be used for further animal selection strategy.

Genetic Reassortment of Rice stripe virus RNA Segments Detected by RT-PCR Restriction Enzyme Analysis-based Method

  • Jonson, Miranda Gilda;Lian, Sen;Choi, Hong-Soo;Lee, Gwan-Seok;Kim, Chang-Suk;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Our previous sequence and phylogenetic analyses of the Korean Rice stripe virus (RSV) suggested possible genetic reassortment of RNA segments, but whether this RNA variation contributed to the recent RSV outbreaks in Korea is yet unclear. To further clarify these RSV-RNA segment variations, we developed a reverse transcription-polymerase reaction/restriction enzyme (RT-PCR/RE) analysis-based method. We identified five REs, including DraI, EcoR1, NdeI/AseI, and SpeI, that could differentiate RSV RNA 1-4 subtypes, respectively. Our RT-PCR/RE results provided a clear pattern of RNA reassortment, i.e., different groups of isolates having their RNA segments derived from two to three different RSV ancestors, such as from Eastern and Southwestern Chinese or Japanese M and T isolates. We also found that the migratory small brown planthopper from Eastern China caught by aerial net traps that possesses RSV-RNA3 genotypes corresponds mainly to Eastern China, with a few for Southwestern China based on RT-PCR/RE, sequence and phylogenetic analyses, indicating that RSV populations in Eastern China may also have strong RNA variation. The development of an RE analysisbased method proved a useful epidemiological tool for rapid genotyping and identification of mixed infections by RSV strain and by different subtype.

Differential Diagnosis of Human Sparganosis Using Multiplex PCR

  • Jeon, Hyeong-Kyu;Kim, Kyu-Heon;Sohn, Woon-Mok;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Human sparganosis was diagnosed by morphological and genetic analyses in Korea. The complete mitochondrial genomes of Spirometra erinaceieuropaei and S. decipiens isolated in Korea have been recorded. Present study was performed to provide information to diagnose the etiologic agent of sparganosis by multiplex PCR using mitochondrial genome sequences of S. erinaceieuropaei and S. decipiens. In an effort to examine the differential diagnosis of spirometrid tapeworms, multiplex PCR assays were performed on plerocercoid larvae of S. erinaceieuropaei and S. decipiens. The PCR products obtained using species-specific primers were positively detected in all PCR assays on mixture of S. erinaceieuropaei and S. decipiens DNA. S. erinaceieuropaei-specific bands (239 bp and 401 bp) were obtained from all PCR assays using a mixture of S. erinaceieuropaei-specific primers (Se/Sd-1800F and Se-2018R; Se/Sd-7955F and Se-8356R) and S. erinaceieuropaei template DNA. S. decipiens-specific bands (540 bp and 644 bp) were also detected in all PCR assays containing mixtures of S. decipiens-specific primers (Se/Sd-1800F and Sd-2317R; Se/Sd-7955F and Sd-8567R) and S. decipiens template DNA. Sequence analyses on these species-specific bands revealed 100% sequence identity with homologous regions of the mtDNA sequences of S. erinaceieuropaei and S. decipiens. The multiplex PCR assay was useful for differential diagnosis of human sparganosis by detecting different sizes in species-specific bands.

Diversity and distribution of mating types in Lentinula edodes and mating type preference in domesticated strains

  • Ha, Byeong-Suk;Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.37-37
    • /
    • 2018
  • Mating type of Lentinula edodes is determined by two unlinked genetic loci, A and B. To better understand mating behavior of L. edodes, we investigated variations in mating type genes in129 dikaryotic strains collected from East Asia. Through sequence analysis of A locus, we discovered that hypervariable region spanning N-term of HD2-intergenic region-N-term of HD1 could represent A mating type. Mating and hypervariable region analyses revealed 70 unique A mating types: 27 from 98 cultivated strains, 53 from 31 wild strains, and 10 commonly found. It was also revealed that only a few A mating type alleles such as A1, A4, A5, and A7 were prevalent in cultivated strains. Contrarily, A mating type in wild strains was highly diverse: 23 unique A alleles were discovered in small mountainous area in Korean peninsula, suggesting rapid evolution of A mating type in nature. The B locus was assessed by allelic variations in pheromone (PHB) and pheromone receptor (RCB) pairs which constituted subloci Ba and Bb. Sequence analyses and mating assay revealed 5 alleles of RCB1 with 9 associated PHBs in Ba sublocus and 3 alleles of RCB2 with 5 associated PHBs in Bb sublocus. Each RCB was primarily associated with two PHBs. Each PHB-RCB pair was always discovered as a distinct unit. This allowed us to propose 15 B mating types via combinations of five Ba and three Bb subloci. Further investigation on 129 strains confirmed that the B locus, unlike the A locus, was indeed restricted to 15 mating types. Thus, the total number of mating types became 1,050 in L. edodes through a combination of 70 A and 15 B. This number will further increase because of rapid diversification of A mating type. Our findings provide a comprehensive and practical knowledge on mating behaviors of L. edodes.

  • PDF

Next Generation Sequencing and Bioinformatics (차세대 염기서열 분석기법과 생물정보학)

  • Kim, Ki-Bong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.357-367
    • /
    • 2015
  • With the ongoing development of next-generation sequencing (NGS) platforms and advancements in the latest bioinformatics tools at an unprecedented pace, the ultimate goal of sequencing the human genome for less than $1,000 can be feasible in the near future. The rapid technological advances in NGS have brought about increasing demands for statistical methods and bioinformatics tools for the analysis and management of NGS data. Even in the early stages of the commercial availability of NGS platforms, a large number of applications or tools already existed for analyzing, interpreting, and visualizing NGS data. However, the availability of this plethora of NGS data presents a significant challenge for storage, analyses, and data management. Intrinsically, the analysis of NGS data includes the alignment of sequence reads to a reference, base-calling, and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection, and genome browsing. While the NGS technologies have allowed a massive increase in available raw sequence data, a number of new informatics challenges and difficulties must be addressed to improve the current state and fulfill the promise of genome research. This review aims to provide an overview of major NGS technologies and bioinformatics tools for NGS data analyses.

Phylogenic Study of Genus Phyllostachys (Phyllostachys) in Korea by Internal Transcribed Spacer Sequence (ITS) (ITS 서열에 의한 한국 왕대속 식물종의 계통분류학적 연구)

  • Lee, Song-Jin;Huh, Man-Kyu;Huh, Hong-Wook;Lee, Byeong-Ryong
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1281-1287
    • /
    • 2011
  • Phyllostachys consists of high and fast growing trees and is a genus in the family Gramineae. The genus has many species in Asia, with main distribution being in India and China. One of the most popular sequences for phylogenetic inference at the generic and infrageneric levels in plants is the internal transcribed spacer (ITS) region of the 18S-5.8S-26S nuclear ribosomal cistron. We evaluated four taxa with the ITS region to estimate phenotypic relationships within the genus Phyllostachys in Korea. Alignment of the DNA sequences required the addition of numerous gaps. Sequence variation within the Phyllostachys was mostly due to natural selection, although several indels and inserts were found. Within the genus Phyllostachys, P. nigra and P. nigra var. henonis were the relatives in the three phylogenetic analyses (MP, ML, and NJ). However, some external nodes were poorly supported. Morphological traits and simple repeats (ISSR) represented the result of a relationship similar to the that of ITS sequences in the genus Phyllostachys. This suggests that ITS sequences are very informative for identification of these taxa.

Expression and DNA Sequence of the Gene Coding for the lux-specific Fatty Acyl-CoA Reductase from photobacterium phosphoreum

  • Lee, Chan-Yong;Edward A. Meighen
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.80-87
    • /
    • 2000
  • The nucleotide sequence of the luxC gene coding for lux-specific fatty acyl-CoA reductase and the upstream DNA (325bp)of the structural gene from bioluminescent bacterium, Photobacterium phosphoreum, has been deternubed. An open reading frame extending for more than 20 codons in 325 bp DNA upstream of luxC was not present in both directions. The lux gene can be translated into a polypeptide of 54 kDa and the amino acid sequences of lux specific reductases of P. phosphoreum shares 80, 65, 58, and 62% identity with those of the Photobacterium leiognathi, Vibrio fischeri, Vibrio harveyi, and Xehnorhabdus luminescenens reductases, respectively. Analyses of codon usage, showing that a high frequency (2.3%) of the isoleucine codon, AUA, in the luxC gene compared to that found in Escherichia coli genes (0.2%) and its absence in the luxA and B genes, suggested that the AUA codon may play a modulator role in the expression of lux gene in E. coli. The structural genes (luxC, D, A, B, E) of the P. phosphoreum coding for luciferase (${\alpha}$,${\beta}$) and fatty acid reductase (r, s, t) polypeptides can be expressed exclusively in E. coli under the T7 phage RNA polymerase/promoter system and identificationof the [35S]methionine labelled polypeptide products. The degree of expression of lux genes in analyses of codon usage. High expression of the luxC gene could only be accomplished in a mutant E. coli 43R. Even in crude extracts, the acylated acyl-CoA reductase intermediate as well as acyl-CoA reductrase activities could be readily detected.

  • PDF

Complete Genome Sequences and Evolutionary Analysis of Cucurbit aphid-borne yellows virus Isolates from Melon in Korea

  • Kwak, Hae-Ryun;Lee, Hee Ju;Kim, Eun-A;Seo, Jang-Kyun;Kim, Chang-Seok;Lee, Sang Gyu;Kim, Jeong-Soo;Choi, Hong-Soo;Kim, Mikyeong
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.532-543
    • /
    • 2018
  • Complete genome sequences of 22 isolates of Cucurbit aphid-borne yellows virus (CABYV), collected from melon plants showing yellowing symptom in Korea during the years 2013-2014, were determined and compared with previously reported CABYV genome sequences. The complete genomes were found to be 5,680-5,684 nucleotides in length and to encode six open reading frames (ORFs) that are separated into two regions by a non-coding internal region (IR) of 199 nucleotides. Their genomic organization is typical of the genus Polerovirus. Based on phylogenetic analyses of complete nucleotide (nt) sequences, CABYV isolates were divided into four groups: Asian, Mediterranean, Taiwanese, and R groups. The Korean CABYV isolates clustered with the Asian group with > 94% nt sequence identity. In contrast, the Korean CABYV isolates shared 87-89% sequence identities with the Mediterranean group, 88% with the Taiwanese group, 81-84% with the CABYV-R group, and 72% with another polerovirus, M.. Recombination analyses identified 24 recombination events (12 different recombination types) in the analyzed CABYV population. In the Korean CABYV isolates, four recombination types were detected from eight isolates. Two recombination types were detected in the IR and P3-P5 regions, respectively, which have been reported as hotspots for recombination of CABYV. This result suggests that recombination is an important evolutionary force in the genetic diversification of CABYV populations.

Response of integral abutment bridges under a sequence of thermal loading and seismic shaking

  • Tsinidis, Grigorios;Papantou, Maria;Mitoulis, Stergios
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.11-28
    • /
    • 2019
  • This article investigates the response of Integral Abutment Bridges (IAB) when subjected to a sequence of seasonal thermal loading of the deck followed by ground seismic shaking in the longitudinal direction. Particular emphasis is placed on the effect of pre-seismic thermal Soil-Structure Interaction (SSI) on the seismic performance of the IAB, as well as on the ability of various backfills configurations, to minimize the unfavorable SSI effects. A series of two-dimensional numerical analyses were performed for this purpose, on a complete backfill-integral bridge-foundation soil system, subjected to seasonal cyclic thermal loading of the deck, followed by ground seismic shaking, employing ABAQUS. Various backfill configurations were investigated, including conventional dense cohesionless backfills, mechanically stabilized backfills and backfills isolated by means of compressive inclusions. The responses of the investigated configurations, in terms of backfill deformations and earth pressures, and bridge resultants and displacements, were compared with each other, as well as with relevant predictions from analyses, where the pre-seismic thermal SSI effects were neglected. The effects of pre-seismic thermal SSI on the seismic response of the coupled IAB-soil system were more evident in cases of conventional backfills, while they were almost negligible in case of IAB with mechanically stabilized backfills and isolated abutments. Along these lines, reasonable assumptions should be made in the seismic analysis of IAB with conventional sand backfills, to account for pre-seismic thermal SSI effects. On the contrary, the analysis of the SSI effects, caused by thermal and seismic loading, can be disaggregated in cases of IAB with isolated backfills.

Development of EST-SSRs and Assessment of Genetic Diversity in Germplasm of the Finger Millet, Eleusine coracana (L.) Gaertn.

  • Wang, Xiaohan;Lee, Myung Chul;Choi, Yu-Mi;Kim, Seong-Hoon;Han, Seahee;Desta, Kebede Taye;Yoon, Hye-myeong;Lee, Yoonjung;Oh, Miae;Yi, Jung Yoon;Shin, Myoung-Jae;Kim, Kyung-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.443-451
    • /
    • 2021
  • Finger millet (Eleusine coracana) is widely cultivated in tropical regions worldwide owing to its high nutritional value. Finger millet is more tolerant against biotic and abiotic stresses such as pests, drought, and salt than other millet crops; therefore, it was proposed as a candidate crop to adapt to climate change in Korea. In 2019, we used expressed sequence tag simple sequence repeat (EST-SSR) markers to evaluate the genetic diversity and structure of 102 finger millet accessions from two geographical regions (Africa and South Asia) to identify appropriate accessions and enhance crop diversity in Korea. In total, 40 primers produced 116 alleles, ranging in size from 135 to 457 bp, with a mean polymorphism information content (PIC) of 0.18225. Polymorphism was detected among the 40 primers, and 13 primers were found to have PIC values > 0.3. Principal coordinate and phylogenetic analyses, based on the combined data of both markers, grouped the finger millet accessions according to their respective collection areas.Therefore, the 102 accessions were classified into two groups, one from Asia and the other from Africa. We have conducted an in-depth study on the finger millet landrace pedigree. By sorting out and using the molecular characteristics of each pedigree, it will be useful for the management and accession identification of the plant resource. The novel SSR markers developed in this study will aid in future genetic analyses of E. coracana.