• 제목/요약/키워드: Seq2Seq(Sequence to Sequence)

검색결과 47건 처리시간 0.032초

Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage

  • Kim, Daeho;Hong, Sanghyun;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.227-235
    • /
    • 2018
  • Foodborne illness represents a major threat to public health and is frequently attributed to pathogenic microorganisms on fresh produce. Recurrent outbreaks often come from vegetables that are grown close to or within the ground. Therefore, the first step to understanding the public health risk of microorganisms on fresh vegetables is to identify and describe microbial communities. We investigated the phyllospheres on Chinese cabbage (Brassica rapa subsp. pekinensis, N = 54). 16S rRNA gene amplicon sequencing targeting the V5-V6 region of 16S rRNA genes was conducted by employing the Illumina MiSeq system. Sequence quality was assessed, and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using a weighted Fast UniFrac matrix. The average number of sequence reads generated per sample was 34,584. At the phylum level, bacterial communities were composed primarily of Proteobacteria and Bacteroidetes. The most abundant genera on Chinese cabbages were Chryseobacterium, Aurantimonadaceae_g, Sphingomonas, and Pseudomonas. Diverse potential pathogens, such as Pantoea, Erwinia, Klebsiella, Yersinia, Bacillus, Staphylococcus, Salmonella, and Clostridium were also detected from the samples. Although further epidemiological studies will be required to determine whether the detected potential pathogens are associated with foodborne illness, our results imply that a metagenomic approach can be used to detect pathogenic bacteria on fresh vegetables.

Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens

  • Kong, H.R.;Anthony, N.B.;Rowland, K.C.;Khatri, B.;Kong, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.13-18
    • /
    • 2018
  • Objective: Meat quality including muscle color in chickens is an important trait and continuous selective pressures for fast growth and high yield have negatively impacted this trait. This study was conducted to investigate genetic variations responsible for regulating muscle color. Methods: Whole genome re-sequencing analysis using Illumina HiSeq paired end read method was performed with pooled DNA samples isolated from two broiler chicken lines divergently selected for muscle color (high muscle color [HMC] and low muscle color [LMC]) along with their random bred control line (RAN). Sequencing read data was aligned to the chicken reference genome sequence for Red Jungle Fowl (Galgal4) using reference based genome alignment with NGen program of the Lasergene software package. The potential causal single nucleotide polymorphisms (SNPs) showing non-synonymous changes in coding DNA sequence regions were chosen in each line. Bioinformatic analyses to interpret functions of genes retaining SNPs were performed using the ingenuity pathways analysis (IPA). Results: Millions of SNPs were identified and totally 2,884 SNPs (1,307 for HMC and 1,577 for LMC) showing >75% SNP rates could induce non-synonymous mutations in amino acid sequences. Of those, SNPs showing over 10 read depths yielded 15 more reliable SNPs including 1 for HMC and 14 for LMC. The IPA analyses suggested that meat color in chickens appeared to be associated with chromosomal DNA stability, the functions of ubiquitylation (UBC) and quality and quantity of various subtypes of collagens. Conclusion: In this study, various potential genetic markers showing amino acid changes were identified in differential meat color lines, that can be used for further animal selection strategy.

Whole genome sequence of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology

  • Ayesha, Wisal;Asad Ullah;Waheed Anwar;Carlos M. Morel;Syed Shah Hassan
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.34.1-34.10
    • /
    • 2023
  • Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.

KUGI: A Database and Search System for Korean Unigene and Pathway Information

  • Yang, Jin-Ok;Hahn, Yoon-Soo;Kim, Nam-Soon;Yu, Ung-Sik;Woo, Hyun-Goo;Chu, In-Sun;Kim, Yong-Sung;Yoo, Hyang-Sook;Kim, Sang-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.407-411
    • /
    • 2005
  • KUGI (Korean UniGene Information) database contains the annotation information of the cDNA sequences obtained from the disease samples prevalent in Korean. A total of about 157,000 5'-EST high throughput sequences collected from cDNA libraries of stomach, liver, and some cancer tissues or established cell lines from Korean patients were clustered to about 35,000 contigs. From each cluster a representative clone having the longest high quality sequence or the start codon was selected. We stored the sequences of the representative clones and the clustered contigs in the KUGI database together with their information analyzed by running Blast against RefSeq, human mRNA, and UniGene databases from NCBI. We provide a web-based search engine fur the KUGI database using two types of user interfaces: attribute-based search and similarity search of the sequences. For attribute-based search, we use DBMS technology while we use BLAST that supports various similarity search options. The search system allows not only multiple queries, but also various query types. The results are as follows: 1) information of clones and libraries, 2) accession keys, location on genome, gene ontology, and pathways to public databases, 3) links to external programs, and 4) sequence information of contig and 5'-end of clones. We believe that the KUGI database and search system may provide very useful information that can be used in the study for elucidating the causes of the disease that are prevalent in Korean.

  • PDF

Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

  • Miao, Cui-Ping;Mi, Qi-Li;Qiao, Xin-Guo;Zheng, You-Kun;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.127-134
    • /
    • 2016
  • Background: Rhizospheric fungi play an essential role in the plantesoil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods: Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results: A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequenceswas high, accounting for 12.9% and 5.5%, respectively. In total,113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

Genetic diversity and population structure among accessions of Perilla frutescens (L.) Britton in East Asia using new developed microsatellite markers

  • Sa, Kyu Jin;Choi, Ik?Young;Park, Kyong?Cheul;Lee, Ju Kyong
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1319-1329
    • /
    • 2018
  • SSRs were successfully isolated from the Perilla crop in our current study, and used to analyze Perilla accessions from East Asia. Analyses of the clear genetic diversity and relationship for Perilla crop still remain insufficient. In this study, 40 new simple sequence repeat (SSR) primer sets were developed from RNA sequences using transcriptome analysis. These new SSR markers were applied to analyze the diversity, relationships, and population structure among 35 accessions of the two cultivated types of Perilla crop and their weedy types. A total of 220 alleles were identified at all loci, with an average of 5.5 alleles per locus and a range between 2 and 10 alleles per locus. The MAF (major allele frequency) per locus varied from 0.229 to 0.943, with an average of 0.466. The average polymorphic information content (PIC) value was 0.603, ranging from 0.102 to 0.837. The genetic diversity (GD) ranged from 0.108 to 0.854, with an average of 0.654. Based on population structure analysis, all accessions were divided into three groups: Group I, Group II and the admixed group. This study demonstrated the utility of new SSR analysis for the study of genetic diversity and population structure among 35 Perilla accessions. The GD of each locus for accessions of cultivated var. frutescens, weedy var. frutescens, cultivated var. crispa, and weedy var. crispa were 0.415, 0.606, 0.308, and 0.480, respectively. Both weedy accessions exhibited higher GD and PIC values than their cultivated types in East Asia. The new SSR primers of Perilla species reported in this study may provide potential genetic markers for population genetics to enhance our understanding of the genetic diversity, genetic relationship and population structure of the cultivated and weedy types of P. frutescens in East Asia. In addition, new Perilla SSR primers developed from RNA-seq can be used in the future for cultivar identification, conservation of Perilla germplasm resources, genome mapping and tagging of important genes/QTLs for Perilla breeding programs.

Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression

  • Kumar, Shiv;Umair, Zobia;Kumar, Vijay;Lee, Unjoo;Choi, Sun-Cheol;Kim, Jaebong
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.403-408
    • /
    • 2019
  • Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo.

Effects of Culture Mechanism of Cinnamomum kanehirae and C. camphora on the Expression of Genes Related to Terpene Biosynthesis in Antrodia cinnamomea

  • Zhang, Zhang;Wang, Yi;Yuan, Xiao-Long;Luo, Ya-Na;Luo, Ma-Niya;Zheng, Yuan
    • Mycobiology
    • /
    • 제50권2호
    • /
    • pp.121-131
    • /
    • 2022
  • The rare edible and medicinal fungus Antrodia cinnamomea has a substantial potential for development. In this study, Illumina HiSeq 2000 was used to sequence its transcriptome. The results were assembled de novo, and 66,589 unigenes with an N50 of 4413 bp were obtained. Compared with public databases, 6,061, 3,257, and 2,807 unigenes were annotated to the Non-Redundant, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The genes related to terpene biosynthesis in the mycelia of A. cinnamomea were analyzed, and acetyl CoA synthase (ACS2 and ACS4), hydroxymethylglutaryl CoA reductase (HMGR), farnesyl transferase (FTase), and squalene synthase (SQS) were found to be upregulated in XZJ (twig of C. camphora) and NZJ (twig of C. kanehirae). Moreover, ACS5 and 2,3-oxidized squalene cyclase (OCS) were highly expressed in NZJ, while heme IX farnesyl transferase (IX-FIT) and ACS3 were significantly expressed in XZJ. The differential expression of ACS1, ACS2, HMGR, IX-FIT, SQS, and OCS was confirmed by real-time quantitative reverse transcription PCR. This study provides a new concept for the additional exploration of the molecular regulatory mechanism of terpenoid biosynthesis and data for the biotechnology of terpenoid production.

Characterization of microbiota diversity of engorged ticks collected from dogs in China

  • Wang, Seongjin;Hua, Xiuguo;Cui, Li
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.37.1-37.14
    • /
    • 2021
  • Background: Ticks are one of the most common external parasites in dogs, and are associated with the transmission of a number of major zoonoses, which result in serious harm to human health and even death. Also, the increasing number of pet dogs and pet owners in China has caused concern regarding human tick-borne illnesses. Accordingly, studies are needed to gain a complete understanding of the bacterial composition and diversity of the ticks that parasitize dogs. Objectives: To date, there have been relatively few reports on the analysis of the bacterial community structure and diversity in ticks that parasitize dogs. The objective of this study was to investigate the microbial composition and diversity of parasitic ticks of dogs, and assessed the effect of tick sex and geographical region on the bacterial composition in two tick genera collected from dogs in China. Methods: A total of 178 whole ticks were subjected to a 16S ribosomal RNA (rRNA) next generation sequencing analysis. The Illumina MiSeq platform targeting the V3-V4 region of the 16S rRNA gene was used to characterize the bacterial communities of the collected ticks. Sequence analysis and taxonomic assignment were performed using QIIME 2 and the GreenGene database, respectively. After clustering the sequences into taxonomic units, the sequences were quality-filtered and rarefied. Results: After pooling 24 tick samples, we identified a total of 2,081 operational taxonomic units, which were assigned to 23 phyla and 328 genera, revealing a diverse bacterial community profile. The high, moderate and low prevalent taxa include 46, 101, and 182 genera, respectively. Among them, dominant taxa include environmental bacterial genera, such as Psychrobacter and Burkholderia. Additionally, some known tick-associated endosymbionts were also detected, including Coxiella, Rickettsia, and Ricketssiella. Also, the potentially pathogenic genera Staphylococcus and Pseudomonas were detected in the tick pools. Moreover, our preliminary study found that the differences in microbial communities are more dependent on the sampling location than tick sex in the tick specimens collected from dogs. Conclusions: The findings of this study support the need for future research on the microbial population present in ticks collected from dogs in China.

Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds

  • Kim, HyoYoung;Caetano-Anolles, Kelsey;Seo, Minseok;Kwon, Young-jun;Cho, Seoae;Seo, Kangseok;Kim, Heebal
    • Genomics & Informatics
    • /
    • 제13권4호
    • /
    • pp.137-145
    • /
    • 2015
  • Selective sweep can cause genetic differentiation across populations, which allows for the identification of possible causative regions/genes underlying important traits. The pig has experienced a long history of allele frequency changes through artificial selection in the domestication process. We obtained an average of 329,482,871 sequence reads for 24 pigs from three pig breeds: Yorkshire (n = 5), Landrace (n = 13), and Duroc (n = 6). An average read depth of 11.7 was obtained using whole-genome resequencing on an Illumina HiSeq2000 platform. In this study, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio tests were implemented to detect genes experiencing positive selection for the genome-wide resequencing data generated from three commercial pig breeds. In our results, 26, 7, and 14 genes from Yorkshire, Landrace, and Duroc, respectively were detected by two kinds of statistical tests. Significant evidence for positive selection was identified on genes ST6GALNAC2 and EPHX1 in Yorkshire, PARK2 in Landrace, and BMP6, SLA-DQA1, and PRKG1 in Duroc. These genes are reportedly relevant to lactation, reproduction, meat quality, and growth traits. To understand how these single nucleotide polymorphisms (SNPs) related positive selection affect protein function, we analyzed the effect of non-synonymous SNPs. Three SNPs (rs324509622, rs80931851, and rs80937718) in the SLA-DQA1 gene were significant in the enrichment tests, indicating strong evidence for positive selection in Duroc. Our analyses identified genes under positive selection for lactation, reproduction, and meat-quality and growth traits in Yorkshire, Landrace, and Duroc, respectively.