• Title/Summary/Keyword: Separation rate

Search Result 1,380, Processing Time 0.027 seconds

A Model-based Rate Separation Algorithm Using Multiple Channels in Multi-Radio Ad Hoc Networks (멀티 라디오 애드혹 네트워크에서의 멀티 채널을 이용한 모델 기반 레이트 분할 알고리즘)

  • Kim, Sok-Hyong;Kim, Dong-Wook;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.73-81
    • /
    • 2011
  • IEEE 802.11 PHY and MAC layer provide multiple channels and data rates. To improve the performance of IEEE 802.11 multi-radio ad hoc networks, it is required to utilize available channels and data rates efficiently. However, in IEEE 802.11 multi-rate networks, the rate anomaly (RA) problem occurs that the network performance is severely degraded as low-rate links affect high-rate links. Hence, in this paper, we propose a model-based rate separation (MRS) algorithm that uses multiple channels to separate different data rate links so that the RA problem is mitigated. MRS algorithm utilizes an existing throughput model that estimates the throughput of IEEE 802.11 single-hop networks to separate low-rate links and high-rate links. Through simulations, we demonstrate that the MRS algorithm shows improved network performance compared with existing algorithms in multi-radio ad hoc networks.

EUTECTIC(LiCl-KCl) WASTE SALT TREATMENT BY SEQUENCIAL SEPARATION PROCESS

  • Cho, Yung-Zun;Lee, Tae-Kyo;Choi, Jung-Hun;Eun, Hee-Chul;Park, Hwan-Seo;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.675-682
    • /
    • 2013
  • The sequential separation process, composed of an oxygen sparging process for separating lanthanides and a zone freezing process for separating Group I and II fission products, was evaluated and tested with a surrogate eutectic waste salt generated from pyroprocessing of used metal nuclear fuel. During the oxygen sparging process, the used lanthanide chlorides (Y, Ce, Pr and Nd) were converted into their sat-insoluble precipitates, over 99.5% at $800^{\circ}C$; however, Group I (Cs) and II (Sr) chlorides were not converted but remained within the eutectic salt bed. In the next process, zone freezing, both precipitation of lanthanide precipitates and concentration of Group I/II elements were preformed. The separation efficiency of Cs and Sr increased with a decrease in the crucible moving speed, and there was little effect of crucible moving speed on the separation efficiency of Cs and Sr in the range of a 3.7 - 4.8 mm/hr. When assuming a 60% eutectic salt reuse rate, over 90% separation efficiency of Cs and Sr is possible, but when increasing the eutectic salt reuse rate to 80%, a separation efficiency of about 82 - 86 % for Cs and Sr was estimated.

Treatment of ASR from End-of-Life Vehicles by Air and Gravimetric Separation (廢自動車 ASR의 風力 및 比中選別에 의한 處理 硏究)

  • Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • A study on the air and gravity separation has been performed for the removal of chlorine containing materials from ASR of end-of-life vehicles. The gravity separation was also conducted on waste plastics collected from ASR. In this work, ASR were previously shredded to pass through 8 mm sieve prior to separation tests and the gravity separation of waste plastics was conducted for three different particle sizes. The two-stage air classification was conducted with the range of air flow rate of 9~20 M$^3$/hr at first stage and 25~34 M$^3$/hr at second stage, respectively. The fraction of overflow product was remarkably increased in the 2nd stage air classification because of high air flow rate while that of underflow product obtained from 1st stage air classification was found to be 62~66%. From the results of gravity separation on waste plastics, it was also found that the amount of the float product was much greater than sink product. It is believed that the gravity separation may be used very efficiently for the removal of calorine bearing materials from waste plastics.

Sensitivity Analysis of Artificial Recharge in Consideration of Hydrogeologic Characteristics of Facility Agricultural Complex in Korea : Hydraulic Conductivity and Separation Distance from Injection Well to Pumping Well (국내 시설농업단지의 수리지질 특성을 고려한 인공함양 민감도 분석 : 수리전도도 및 주입정과 양수정의 이격거리)

  • Choi, Jung Chan;Kang, Dong-hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.737-749
    • /
    • 2019
  • In this study, the sensitivity analysis of hydraulic conductivity and separation distance (distance between injection well and pumping well) was analyzed by establishing a conceptual model considering the hydrogeologic characteristics of facility agricultural complex in Korea. In the conceptual model, natural characteristics (topography and geology, precipitation, hydraulic conductivity, etc.) and artificial characteristics (separation distance from injection well to pumping well, injection rate and pumping rate, etc.) is entered, and sensitivity analysis was performed 12 scenarios using a combination of hydraulic conductivity ($10^{-1}cm/sec$, $10^{-2}cm/sec$, $10^{-3}cm/sec$, $10^{-4}cm/sec$) and separation distance (10 m, 50 m, 100 m). Groundwater drawdown at the monitoring well was increased as the hydraulic conductivity decreased and the separation distance increased. From the regression analysis of groundwater drawdown as a hydraulic conductivity at the same separation distance, it was found that the groundwater level fluctuation of artificial recharge aquifer was dominantly influenced by hydraulic conductivity. In the condition that the hydraulic conductivity of artificial recharge aquifer was $10^{-2}cm/sec$ or more, the radius of influence of groundwater level was within 20 m, but In the condition that the hydraulic conductivity is $10^{-3}cm/sec$ or less, it is confirmed that the radius of influence of groundwater increases sharply as the separation distance increases.

SEPARATION OF STRONTIUM AND CESIUM FROM TERNARY AND QUATERNARY LITHIUM CHLORIDE-POTASSIUM CHLORIDE SALTS VIA MELT CRYSTALLIZATION

  • WILLIAMS, AMMON N.;PACK, MICHAEL;PHONGIKAROON, SUPATHORN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.867-874
    • /
    • 2015
  • Separation of cesium chloride (CsCl) and strontium chloride ($SrCl_2$) from the lithium chloride-potassium chloride (LiCl-KCl) salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary $SrCl_2-LiCl-KCl$ salt was explored at similar growth rates (1.8-5 mm/h) and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, $SrCl_2$ separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

Molybdenum isotopes separation using squared-off optimized cascades

  • Mahdi Aghaie;Valiyollah Ghazanfari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3291-3300
    • /
    • 2023
  • Recently molybdenum alloys have been introduced as accident tolerating materials for cladding of fuel rods. Molybdenum element has seven stable isotopes with different neutron absorption cross section used in various fields, including nuclear physics and radioisotope production. This study presents separation approaches for all intermediate isotopes of molybdenum element by squared-off cascades using a newly developed numerical code with Salp Swarm Algorithm (SSA) optimization algorithm. The parameters of cascade including feed flow rate, feed entry stage, cascade cut, input feed flow rate to gas centrifuges (GCs), and cut of the first stage are optimized to maximize both isotope recovery and cascade capacity. The squared off and squared cascades are studied, and the efficiencies are compared. The results obtained from the optimization showed that for the selected squared off cascade, Mo94 in four separation steps, Mo95 in five steps, Mo96 in six steps, Mo97 in seven steps, and Mo98 in two steps are separated to the desired concentrations. The highest recovery factor is obtained 63% for Mo94 separation and lowest recovery factor is found 45% for Mo95.

COAL DESULFURIZATION BY MAGNETIC SEPARATION METHODS (자력선별법에 의한 선탄의 탈황)

  • Jeon, Ho-Seok;Lee, Jae-Jang
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.175-185
    • /
    • 1995
  • Under the new environmental regulations announced by the government, utilities will have to cut their sulfur dioxide emissions by 60% from 1991 levels by the year of 1999. Sulfur dioxide emissions can be reduced prior to combustion by physical, chemical or biological coal cleaning. The new technology of high gradient magnetic separation (HGMS) offers the potential of economic separatoins of a variety of fine, weakly magnetic minerals including inorganic sulfur and many ash-forming minerals from coals. In the present paper, magnetic separation tests have been conducted on Korean anthracite and high-sulfur Chinese coal to investigate the feasibility of these techniques for reducing sulfur content from coals. In wet magnetic separation, the studied operating parameters include particle size, pH, matrix types, feed solids content, feed rate, number of cleaning stages and etc. The results shows that for wet separation, 60~70% of total sulfur was removed from coals with over 80% combustible recovery, on the other hand, for dry separation, 47.6% of total sulfur was removed from coals with 75% recovery.

  • PDF

Automated Wafer Separation from the Stacked Array of Solar Cell Silicon Wafers Using Continuous Water Jet

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Kwak, Ho-Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • In response to the industrial needs for automated handling of very thin solar cell wafers, this paper presents the design concept for the individual wafer separation from the stacked wafers by utilizing continuous water jet. The experimental apparatus for automated wafer separation was constructed and it includes the water jet system and the microprocessor controlled wafer stack advancing system. Through a series of tests, the performance of the proposed design is quantified into the success rate of single wafer separation and the rapidity of processing wafer stack. Also, the inclination angle of wafer equipped cartridge and the water jet flowrate are found to be important parameters to be considered for process optimization. The proposed design shows the concept for fast and efficient processing of wafer separation and can be implemented in the automated manufacturing of silicon based solar cell wafers.

Separation of Humic Acid Using Polysulfone Ultrafiltration Membrane (폴리설폰 UF막에 의한 부식산 분리)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.343-350
    • /
    • 1999
  • The separation of humic acid by ultrafiltration was most influenced by pressure difference. when pressure difference increased from latm to 3atm, permeate flux increased from 40% to 60% but rejection rate reduced from 97% to 91% because of adsorption of molecules of humic acid at membrane surface. Since physical adsorption was more dominant than chemical adsorption, adsorption of membrane surface was reduced 50% when slow rate increased at same conditions.

  • PDF

Phase Separation of Lennard-Jones Particles Using Molecular Dynamics and Brownian Dynamics Simulations

  • Jeong, Ji-Yun;Lee, Ju-Min;Kim, Jun-Su
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.169-182
    • /
    • 2014
  • 이 연구에서는 Lennard-Jones (LJ) particle을 이용하여 상분리 현상을 이해하기 위한 컴퓨터 시뮬레이션 연구를 수행하였다. 초기에 균일하게 분포되어 있는 LJ 입자들을 시뮬레이션 하면 상대적으로 dense phase와 dilute phase로 상분리 현상이 일어나게 된다. 상분리 현상의 첫 번째 단계를 핵 생성 (nucleation) 이라고 한다. 본 연구에서는 Brownian Dynamics (BD) Simulation과 Molecular Dynamics (MD) Simulation을 이용하여 상평형 그림을 구하고 초기에 일어나는 LJ 입자들의 nucleation rates를 구하였다.

  • PDF