• Title/Summary/Keyword: Separation condition

Search Result 866, Processing Time 0.037 seconds

Novel stability indicating high-performance liquid chromatography method for the separation and simultaneous quantification of acalabrutinib and its impurities in pharmaceutical formulation

  • Venu Gopal Kamani;Sujatha M;Guna Bhushana Daddala
    • Analytical Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • This study reports for the first time about a stability indicating RP-HPLC method for qualitative and quantitative determination of acalabrutinib in bulk and dosage form and in presence its impurities 1, 2 and 3. The chromatographic separation was carried on Zorbax XDB-C18 (250×4.6 mm; 5 µ id) as stationary phase, Phosphate buffer pH 6.4 and methanol 80:20 (v/v) as mobile phase at a flow rate of 1.0 mL/min, UV detection was carried at wavelength of 238 nm and the analysis was completed with a run time of 15 min. In these conditions the retention time of acalabrutinib and its impurities 1, 2 and 3 was observed to be 3.50, 4.83, 8.40 and 9.93 min respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability and robustness. Spiked recovery at 50 %, 100 % and 150 % was carried for both standard and impurities and the acceptable % recovery of 98-102 was observed for acalabrutinib and both impurities studied and the % RSD in each spiked level was found to be less than 2. Stability tests were done through exposure of the analyte solution to five different stress conditions i.e expose to 1N hydrochloric acid, 1 N sodium hydroxide, 3 % peroxide, 80 ℃ temperature and UV radiation at 254 nm. In all the degradation condition, standard drug acalabrutinib was detected along with both the impurities studied and the degradation products were successfully separated. In the formulation analysis there is no other chromatographic detection of other impurities and formulation excipients. Hence the developed method was found to be suitable for the quantification of acalabrutinib and can separate and analyse impurities 1 and 2.

Preparation and identification of U(IV) for the investigation of behaviors of uranium in a disposal repository (처분장에서 우라늄 거동 규명을 위한 U(IV)의 제조 및 확인)

  • Kim, Seung Soo;Kang, Kwang Chul;Kim, Jung Suck;Jung, Euo Chang;Baik, Min Hoon
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.143-147
    • /
    • 2008
  • U(IV) ion, the valance state of uranium presumed at in a deep-depth disposal of a spent fuel, was prepared and separated from U(VI) ion. In order to prepare U(IV) ion, tests were performed by adding several reducing agents into a uranyl solution or by dissolution of uranium oxide in a mixed acid added with a reducing agent. The valance states of the uranium in the prepared solutions were identified by separating two ions with a Dowex AG 50W-X8 cation exchange resins and measuring the solutions using a laser-induced fluorescence spectroscopy. However, U(IV) and U(VI) were not separated by a Lichroprep Si60 exchange resin in the same separation condition of Pu(IV) and Pu(VI).

Research on Minimizing Output Degradation in HJT Cell Separation Using IR Laser Scribing (IR 레이저 스크라이빙에 의한 HJT 셀 분할 시 출력 감소율 최소화에 대한 연구)

  • Eunbi Lee;Sungmin Youn;Minseob Kim;Jinho Shin;Yu Jin Kim;Jeonghun Kim;Min-Joon Park;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.37-40
    • /
    • 2024
  • One of the current innovation trends in the solar industry is the increase in the size of silicon wafers. As the wafer size increases, the series resistance of the module rises, highlighting the need for research on methods for cutting and bonding solar cells. Among these, the Infrared (IR) laser scribing technique has been extensively researched. However, there is still insufficient optimization research regarding the thermal damage caused by lasers on the Transparent Conductive Oxide (TCO) layer of Heterojunction (HJT) solar cells. Therefore, in this study, we systematically varied conditions such as IR laser scribing speed, frequency, power, and the number of scribes to investigate their impact on the performance of cut cells under each condition. Additionally, we conducted a comparative analysis of thermal damage effects on the TCO layer based on varying scribing depths.

Effect of the pH Value of Seed Coating Solution on Microstructure of Silicalite-1 Zeolite Separation Layer Grown on α-Alumina Support (종결정 코팅용액 pH 값이 α-알루미나 지지체 표면에 성장하는 Silicalite-1 제올라이트 분리층의 미세구조에 미치는 영향)

  • Hu, Sigui;Kim, Min-Zy;Lee, Du-Hyoung;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.422-430
    • /
    • 2015
  • The present study announces that the pH value of seed coating solution makes a significant effect on the microstructure of silicalite-1 zeolite layer formed on ${\alpha}$-alumina support. Seed with an average diameter of 75 nm was dispersed in ethanol to prepare three kinds of seed coating solutions with different pH values, and dip-coated on the support. The pH value was controlled to be 2.2, 7.0, and 9.3, respectively. In the secondary growth process, pH 7 seed solution resulted an uniform, 3 to $4{\mu}m$ thick, completely covered, and 100 nm grained silicalite-1 zeolite separation layer. The uniformity and completeness were explained by a uniform, closely packed, multi-layered, and completely covered seed coating in the pH 7 condition. In the condition, ${\alpha}$-alumina support and seed are oppositely charged: support is positively charged (8.4 mV) and seed, negatively (-1.7 mV). The opposite charging induced a strong electrostatic attraction between seed and support, which made the good seed coating state. On the other hand, pH 2.2 and pH 9.3 seed solutions resulted non-uniform, partially covered, and around $1{\mu}m$ grained zeolite separation layer, since seed and support are the same sign charged in the conditions. The same sign charging induced a strong electrostatic repulsion between seed and support which caused a low coverage of seed. It could be concluded that the pH value of seed coating solution is a key parameter to determine the microstructure of silicalite-1 zeolite separation layer.

The study on the metabolism of benzidine in the isolated perfused rat liver (흰쥐의 적출 간 관류법을 이용한 벤지딘 대사에 관한 연구)

  • Bae, Mun Joo;Roh, Jae Hoon;Cho, Young Bong;Kim, Choon Sung;Chun, Mi Ryoung;Kim, Chi Nyon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.28-37
    • /
    • 1996
  • Benzidine, an aromatic amine used primarily in the manufacture of azo dyes, is recognized as a urinary bladder carcinogen in humans. In rats, mice, and hamsters, chronic exposure to benzidine resulted in tumors of the liver. The present study was undertaken to suggest analyzing the metabolites of benzidine with the optimal condition, identify the metabolites of benzidine, and observe time variance of the metabolites in the isolated perfusated rat liver. N-acetylbenzidine was synthesized by acetylation of benzidine with acetic anhydride and separated by thin layer chromatography(TLC) and high performance liquid chromatography(HPLC). To analysis benzidine and the metabolites of benzidine, HPLC operating condition has been optimized by means of preliminary experiment. The mobile phase consisted of acetonitrile(37%) in phosphate buffer, flow rate maintained at 1.0 ml/min. Optimal detective conditions were electrochemicaldetector(ECD) at 0.75 V for benzidine and N-acetylbenzidine and ultravioletdetector(UVD) at 287 nm for N,N'-diacetylbenzidine. The separation system was composed of a guard column and a separation column(Polymer C18, $4.6{\times}250cm$) at a temparature of $40^{\circ}C$. The perfusion system was equilibrated for 30 minutes before addition of benzidine to the perfusate. Samples of the perfusate were collected at time intervals(0, 10, 20, 30, 60, 90, 120 min) during the 2 hour perfusion. Before analyzing samples by HPLC/ECD/UVD, samples had been treated with sep-pak. Samples of perfusate analyzed by HPLC/ECD/UVD and the metabolites of benzidine in the isolated perfused rat liver were N-acetylbenzidine and N,N'-diacetylbenzidine. Benzidine metabolized over 60% during the initial 30 minutes of perfusion, extensively by 1 hour, and was undetectable in the perfusate. N-acetylbenzidine increased by 30 minutes of perfusion, declined. N,N'-diacetylbenzidine increased the 0-90 minutes period, remained constant during the 90-120 minutes period.

  • PDF

Method of Estimating Groundwater Recharge with Spatial-Temporal Variability (시공간적 변동성을 고려한 지하수 함양량의 추정 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.517-526
    • /
    • 2005
  • In Korea, the methods of estimating groundwater recharge can categorized into two groups. One is baseflow separation method by means of groundurater recession curve, the other is water level fluctuation method by using the data from groundwater monitoring wells. Baseflow separation method is based on annual recharge and lumped concept, and water-table fluctuation method is largely dependent on monitoring wells rather than water budget in watershed. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, these methods have various limits to deal with these characteristics. For this purpose, the method of estimating daily recharge rate with spatial variability based on distributed rainfall-runoff model is suggested in this study. Instead of representative recharge rate of large watershed, the subdivided recharge rate with heterogeneous characteristics can be computed in daily base. The estimated daily recharge rate is an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers. Therefore, the newly suggested method could be expected to enhance existing methods.

A Study on the Change of Tensile Force of Friction Type Anchor under Shear Deformation of Ground (지반의 전단변형에 따른 마찰형 앵커의 긴장력 변화에 대한 연구)

  • You, Min-Ku;Kwon, O-Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.13-25
    • /
    • 2018
  • When deformation occurs on slope reinforced with anchor, shear stress and bending stress are applied on the shear surface along the slip surface and increase of the shear deformation causes the tension force variation of the anchor. In this study, shear test was performed by measuring the tension force of the anchor by inducing shear deformation in vertical direction of the anchor using a large-scale direct shear test equipment in order to confirm the tension force variation of the anchor induced by shear deformation. The shear test was performed for 8 conditions which were classified according to the anchor reinforcement, separation distance (1D, 2D, 4D) from the shear surface to bonded part and the lateral-pressure condition (0.1 MPa, 0.2 MPa) of adjacent ground. As a result of the shear test, it was found that the separation distance and the lateral-pressure condition affect the shear force of the ground reinforced by anchor and the tension force of the anchor, and experimentally verified that the shear force variation is related to axial force variation of the anchor head and tip. Therefore, it was confirmed that the behavior of the bonded part induced by the shear deformation can be indirectly predicted by analyzing the tendency of the tension force variation of the anchor head.

Liquid Chromatographic Separation of Salicylic Acid and Its Derivatives Using Amberlite XAD-Copolymers (Amberlite XAD-공중합체를 이용한 살리실산 및 크로마토그래피적 분리 그 유도체들의 액체)

  • Yong Soon Chung;Taik Hyuk Lee;Young Ja Moon;Dai Woon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.70-81
    • /
    • 1989
  • Reverse phase liquid chromatographic elution behaviors of salicylic acid and its derivatives were studied with classical and modern high-performance liquid chromatography(HPLC) using Amberlite XAD-4 and XAD-7 resin packed columns. Capacity factors(k') were determined in the comparatively high concentration(from 0. 010F to 0. 150F) of ferric nitrate-50% methanol solution to elucidate the elution behaviors with classical method. On the other hand, k's were measured in the various concentrations of methanol and ferric nitrate(from $2.5{\times}10^{-4}F\;to\;1.0{\times}10^{-3}F$) solution of pH 2. 25 and 293K with HPLC to explain the elution mechanism of them, and to find their optimum separation condition. As a result, it was found that log k's of salicylic acid and its derivatives were decreased with increasing the concentration of ferric ion, and the decreasing slopes of the compounds on the increasing ferric ion concentrations were related with each stability constant of ferric salicylates. Some isomers of derivatives of salicylic acid could be separated in the optimum condition.

  • PDF

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.

Biological Wastewater Treatment Using Submerged Nonwoven Fabric Separation (침적식 부직포 막분리를 이용한 생물학적 폐수처리)

  • Choi, Hyoung-Sub;Moon, Byung-Hyun;Heo, Jong-Soo;Lee, Hong-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.156-160
    • /
    • 1997
  • The combination of biological wastewater treatment process and membrane separation has many advantages such as better effluent quality and system stability over the conventional biological wastewater treatment process. In this study, direct membrane separation using nonwoven fabric was applied to biological wastewater treatment. A nonwoven fabric module was submerged in the aerated bioreactor. And accumulated biomass in the bioreactor was separated by suction. The system was operated with various condition to investigate pollutant removal efficiencies and flux. After formation of biomass layer on nonwoven fabric surface, a day, the stable effluent water quality was obtained. The flux decreased at a high suction pressure faster than a low pressure. The stable flux was obtained at the pressure of $21{\sim}25cmHg$. In spite of variation of hydraulic retention time, organic loading rate, the removal efficiencies of BOD, $COD_{Cr}$. $COD_{Mn}$ were very high as follows : $95.2%(0.14{\sim}0.97\;BODKg/m^3/day)$, $86.0%(0.17{\sim}1.39\;COD_{Cr}Kg/m^3/day)$, $90.0%(0.097{\sim}0.61\;COD_{Mn}Kg/m^3/day)$.

  • PDF