• Title/Summary/Keyword: Separation cascade

Search Result 52, Processing Time 0.023 seconds

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Analysis of Heavy Water Separation Cascade Using Bithermal ${H_2}$/$H_2$O Exchange Process

  • Ahn, Do-Hee;Paek, Seung-Woo;Lee, Han-Soo;Hongsuk Chung;Masami Shimizu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.571-576
    • /
    • 1996
  • The 3-stage cascade composed of the multisection-type bithermal $H_2$/$H_2O$-exchange columns was suggested for heavy water separation. In order to study the separation characteristics for the cascade, a matrix equation with 18 simultaneous equations was composed and the concentrations and flow rates were calculated for the all parts of the cascade. Product D-concentration decreases and extraction yield increases with increasing cut in each stage, which is one of the principal parameters of the separation characteristics. The optimization of the 3-stage cascade can be made by case study using the matrix equation.

  • PDF

Molybdenum isotopes separation using squared-off optimized cascades

  • Mahdi Aghaie;Valiyollah Ghazanfari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3291-3300
    • /
    • 2023
  • Recently molybdenum alloys have been introduced as accident tolerating materials for cladding of fuel rods. Molybdenum element has seven stable isotopes with different neutron absorption cross section used in various fields, including nuclear physics and radioisotope production. This study presents separation approaches for all intermediate isotopes of molybdenum element by squared-off cascades using a newly developed numerical code with Salp Swarm Algorithm (SSA) optimization algorithm. The parameters of cascade including feed flow rate, feed entry stage, cascade cut, input feed flow rate to gas centrifuges (GCs), and cut of the first stage are optimized to maximize both isotope recovery and cascade capacity. The squared off and squared cascades are studied, and the efficiencies are compared. The results obtained from the optimization showed that for the selected squared off cascade, Mo94 in four separation steps, Mo95 in five steps, Mo96 in six steps, Mo97 in seven steps, and Mo98 in two steps are separated to the desired concentrations. The highest recovery factor is obtained 63% for Mo94 separation and lowest recovery factor is found 45% for Mo95.

Restoration of the isotopic composition of reprocessed uranium hexafluoride using cascade with additional product

  • Palkin, Valerii;Maslyukov, Eugenii
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2867-2873
    • /
    • 2020
  • In reprocessed uranium, derived from an impoverished fuel of light-water moderated reactors, there are isotopes of 232, 234, 236U, which make its recycling remarkably difficult. A method of concentration of 235U target isotope in cascade's additional product was proposed to recover the isotopic composition of reprocessed uranium. A general calculation procedure is presented and a parameters' optimization of multi-flow cascades with additional products. For the first time a numeric model of a cascade that uses the cuts of partial flows of stages with relatively high separation factors was applied in this procedure. A novel computing experiment is carried out on separation of reprocessed uranium hexafluoride with providing a high concentration of 235U in cascade's additional product with subsequent dilution. The parameters of cascades' stages are determined so as to allow reducing the 232, 234, 236U isotope content up to the acceptable. It was demonstrated that the dilution of selected products by the natural waste makes it possible to receive a low enriched uranium hexafluoride that meets the ASTM C996-15 specification for commercial grade.

Efficiency criteria for optimization of separation cascades for uranium enrichment

  • Sulaberidze, Georgy;Zeng, Shi;Smirnov, Andrey;Bonarev, Anton;Borisevich, Valentin;Jiang, Dongjun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.126-131
    • /
    • 2018
  • As it is known, uranium enrichment is carried out on industrial scale by means of multistage separation facilities, i.e., separation cascades in which gas centrifuges (GCs) are connected in series and parallel. Design and construction of these facilities require significant investment. So, the problem of calculation and optimization of cascade working parameters is still relevant today. At the same time, in many cases, the minimum unit cost of a product is related to the cascade having the smallest possible number of separation elements/GCs. Also, in theoretical studies, it is often acceptable to apply as an efficiency criterion the minimum total flow to supply cascade stages instead of the abovementioned minimum unit cost or the number of separation elements. In this article, cascades with working parameter of a single GC changing from stage to stage are optimized by two of the abovementioned performance criteria and are compared. The results obtained allow us to make a conclusion about their differences.

Experimental Study on Separation Capacity of Cascade Impactor for Liquid Aerosols

  • Ma, Chang-Jin;Mikio-Kasahara;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E1
    • /
    • pp.9-16
    • /
    • 2001
  • To evaluate the correct separation capacity of cascade impactor for liquid aerosol, theoretical and experimental calculations of 50% cut-off diameter(ECOD(sub)50) were performed. A recalculation method of original diameter for hemispheric liquid aerosol collected on casecad impactor is also proposed newly using fixation technique. Calculated values for theoretical (ECOD(sub)50) of 40stage cascade impactor are 20, 6.4, 2.8, and 1.4$\mu\textrm{m}$ at 1st- ,2nd-, 3rd- and 4th-stage, respectively. A good agreement between the result of theoretical (ECOD(sub)50) and that og experimental ones was obtained at Stage 2 and 3. On the other hand, relatively large differences were found at Stage 1 and 4. Fixation for liquid aerosols using ${\alpha}$-cyanoacrylate monomer was performed successfully. The orignal diameter of liquid aerosols collected on each stage was calculated. The maximum levels of number size distribution curves at each stage are 19.8, 6.5, 3.1 and 1.5 $\mu\textrm{m}$ at 1st-, 2nd-, 3rd- and 4th-stage, respectively. The distortion of separation capacity of cascade impactor due to the split, merger, disappearance, and evaporation of liquid aerosols in the fluid did not occur.

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

A Study on Trailing Edge Noise from a Blade Cascade in a Uniform Flow (케스케이드 날개 후단소음 특성에 관한 연구)

  • J. M. Son;Kim, H. K.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.366.1-366
    • /
    • 2002
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strong1y affected by them along with the flow coefficient. (omitted)

  • PDF

An Investigation on Separation Configurations in Compressor Cascades with Boundary Layer Suction(BLS)

  • Zhang, Hualiang;Tan, Chunqing;Zhang, Dongyang;Wang, Songtao;Wang, Zhongqi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.143-149
    • /
    • 2008
  • A numerical study was performed for a vane of a compressor with a high-turning angle and meridional divergence. At first, the effect of the suction position was discussed. Then, the optimal suction position was applied to the cascades with the aspect ratio of 2.53 and 0.3, respectively, to get the knowledge of the effect of the endwall boundary layer removal on the secondary flow along the blade height. At last, using the critical principles of the three-dimensional separation, the topological structures of the flow patterns of the body surfaces and the separation configurations were discussed in detail. The results show that the largest reduction of the total loss can be achieved when the suction slot is near the suction side. The topological structure as well as the separation configuration varies due to boundary layer removal, which restrains the flow separation at the corner and delays or depresses the separation on the suction surface. Compared with the original cascade, the cascade with the endwall boundary layer removal has a higher blade loading along the most span. Furthermore the flow loss decreases and distributes uniformly along the span.

  • PDF

Experimental Study on the Effects of Upstream Periodic Wakes on Aerofoil-Boundary Layer and Loss (주기적 상류 후류의 익 경계층과 손실에 미치는 영향에 대한 실험적 연구)

  • Rim, In-Won;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.661-667
    • /
    • 2001
  • This paper is concerned with the effects of periodically approaching upstream wakes on cascade-flow and loss. The reduced frequency of the periodic wakes was varied in the narrow range from 0.5 to 0.7. According to a wake-passing through the cascade, two velocity deficits appear near the boundary layer contour in the downstream from about 60% chord-length. The first velocity deficit is caused by a periodic wake and the second one appears after some delayed time. The second velocity deficit may be interpreted as the results of reattachment of flow-separation. The higher reduced frequency decreases the duration time of separation appearance and the lesser loss of aerofoil is resulted.

  • PDF