• 제목/요약/키워드: Separation Vortex

검색결과 253건 처리시간 0.022초

Numerical Studies of Flow Across End-to-Side Distal Vascular Bypass Graft Anastomoses

  • Kim, Y.H.;Kim, J.H.;Shin, J.W.
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권4호
    • /
    • pp.339-352
    • /
    • 1992
  • A numerical simulation of the steady and pulsatile flow across the end-to-side anastomosis was performed In order to understand the role of flow dynamics in the preferential bevel opment of distal anastomotic intimal hyperplasla. The finite element technique was employed to solve two-dimensional unsteady pulsatile flow in that region. The results of the steady flow revealed that low shear stresses occur at the proximally occluded host artery and at the recirculation region in the Inner wall just distal to the toe region of the anastomosis. The nor- mal;zed wall shear rate was increased, as was the recirculation zone size in the host artery of the by-pass graft anastomosis, with increased anastomotic junction angle. In order to min imize the size of the low wall shear region which might result in the intimal hyperplasia in the by-pass graft anastomosis, a smaller anastomotic junction angle is recommended. The pulsatile flow simulation revealed flow that regions of low and ascillating mali shear do exist near the anastomosis as In the steady simulation. The shift of stagnation point depends on the pulsation of the flow. As the flow was accelerated at systole, the stagnation point moved downstream, disappered at early diastole and reappeared during late diastole. Low shear stress was also found along both walls of the occluded proximal artery. However, the diastolic flow behavior is quite different from the steady results. The vortex near the occluded artery moved downstream and inwardly during late systole, and disappeared during diastole. Recirculations proximal to the toe and heel regions were significant during diastole. Shear stress oscillation was found along the opposite wall. The results of the present study revealed that tow shear occurs at the proximally occluded host artery aud the recirculation region in the inner wall Just dlstal to the toe region of the anastomosis. The present study suggested that the regions of fluctuated wall shear stress wit flow separation is correlated with the preferential developing regions of anastomosis neointial fibrous hyperplasia.

  • PDF

Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders

  • Le, Thai-Hoa;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2009
  • Studying the spatial distribution in coherent fields such as turbulence and turbulence-induced force is important to model and evaluate turbulence-induced forces and response of structures in the turbulent flows. Turbulence field-based coherence function is commonly used for the spatial distribution characteristic of the turbulence-induced forces in the frequency domain so far. This paper will focus to study spectral coherent structure of the turbulence and induced forces in not only the frequency domain using conventional Fourier transform-based coherence, but also temporo-spectral coherence one in the time-frequency plane thanks to wavelet transform-based coherence for better understanding of the turbulence and force coherences and their spatial distributions. Effects of spanwise separations, bluff body flow, flow conditions and Karman vortex on coherent structures of the turbulence and induced pressure, comparison between turbulence and pressure coherences as well as intermittency of the coherent structure in the time-frequency plane will be investigated here. Some new findings are that not only the force coherence is higher than the turbulence coherence, the coherences of turbulence and forces depend on the spanwise separation as previous studies, but also the coherent structures of turbulence and forces relate to the ongoing turbulence flow and bluff body flow, moreover, intermittency in the time domain and low spectral band is considered as the nature of the coherent structure. Simultaneous measurements of the surface pressure and turbulence have been carried out on some typical rectangular cylinders with slenderness ratios B/D=1 (without and with splitter plate) and B/D=5 under the artificial turbulent flows in the wind tunnel.

DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감 (Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator)

  • 이창욱;심주형;한성현;윤수환;김태규
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.25-32
    • /
    • 2015
  • 원통 모델에 공기저항저감 효과를 검증하기 위해서 원통형에 적합한 유연성 플라즈마 구동기를 제작하였다. 다양한 풍속에서 플라즈마 유동제어 풍동시험을 수행하였으며, CFD 해석과 유동가시화를 수행하였다. 풍속이 느린 저속 구간에서는 유동박리가 발생하지 않아 플라즈마 유동제어 효과가 없었다. 풍속 14 m/s 에서 14% 정도 항력이 저감되었으며, 풍속이 증가된 17 m/s 의 경우 항력이 27% 저감되었다. CFD 해석과 유동가시화의 비교를 통해 DBD플라즈마 구동기는 원통 주변의 압력차를 감소시켜 와류의 크기가 줄어든 것으로 확인되었다.

두꺼운 난류경계층 내부에 놓인 직사각형 프리즘 주위의 유동구조 (Flow Structure Around a Rectangular Prism Placed in a Thick Turbulent Boundary Layer)

  • 김경천;지호성;추재민;이석호;성승학
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.578-586
    • /
    • 2002
  • Flow structures around a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. A thick turbulent boundary layer was generated by using spires arid roughness elements. The boundary layer thickness, displacement thickness and momentum thickness were 650mm, 117.4mm and 78mm, respectively. The ratio between the model height(40mm) and the boundary layer thickness H/$\delta$, was 0.06. The Reynolds number based on the free stream velocity and the height of the model was 7.9$\times$10$^3$. The PIV measurements were performed at three different wall normal planes. Three recirculation regions at forward facing step, top of the roof and backward facing step are clearly seen and show three dimensional features. Dramatic changes of flow patterns are observed in the wake regions in the different spanwise wall normal planes. Instead of reattachment and recirculation zone, rising streamlines are depicted at the normal planes near the side wall due to the interaction with a rising horse shoe vortex. The peak of turbulent kinetic energy occurs at the separation bubble on top of the roof and the magnitude is 2.5 times higher compared with that of the wake region.

플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰 (Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures)

  • 이강희;김형규;윤경호;엄경보;김진선;서정민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

음향여기에 의한 2차원 후방계단과 공동 내의 유동 및 열전달 특성 변화 (Flow and Heat Transfer Characteristics in a Separated Flow over Backward-facing Step and Cavity Controlled by Acoustic Excitation)

  • 조형희;강승구;이동호
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1253-1262
    • /
    • 2001
  • Experimental study is conducted to investigate the heat/mass transfer and flow characteristics for the flow over backward-facing step and cavities. A naphthalene sublimation method has been employed to measure the mass transfer coefficients on the duct wall and LDV system has been used to obtain mean velocity profiles and turbulence intensities. Reynolds number based on the step height and free stream velocity is 20,000 and St numbers of acoustic excitations given to separated flow are 0.2 to 0.4. The spectra of streamwise velocity fluctuation show a sharp peak forcing frequency for an acoustically excited flow. The results reveal that the vortex pairing and overall turbulence level are enhanced by the acoustic excitation and a significant decrease in the reattachment length and the increased turbulence intensity are observed with the excitation. A certain acoustic excitation increases considerably the heat/mass transfer coefficient at the reattachment point and in the recirculation region. For the cavities, heat/mass transfer is enhanced by the acoustic excitation due to the elevated turbulence intensity. For the 10H cavity, the flow pattern is significantly changed with the acoustic excitation. However, for the 5H cavity, the acoustic excitation has little effect on the flow pattern in the cavity.

사각형 바지선의 횡동요 와류 감쇠에 대한 실험적 연구 (Experimental Study on the Eddy Making Damping Effect at the Roll Motion of a Rectangular Barge)

  • 정광효;서성부;전호환
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.267-278
    • /
    • 2007
  • This experimental study investigated on the eddy making effect on the roll motion of a rectangular barge in a two-dimensional wave tank. The structure was used to simulate a simplified rectangular barge in the beam sea condition. The structure with a draft one half of its height was hinged at the center of gravity and free to roll by waves. The rectangular barge was tested with regular waves with a range of wave periods that are shorter, equal to, and longer than its roll natural period. Particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The coupled interactions between the incident wave and the barge were demonstrated by examining the vortical flow fields to elucidate the eddy making effect during the roll motion. For incoming wave with a wave period same as the roll natural period, the barge roll motion was reduced by the eddy making damping effect. At the wave period shorter than the roll natural period, the structure roll motion was slightly reduced by the vertical flow around the barge. However, at the wave period longer than the roll natural period, the eddy making effect due to flow separation at structure corners indeed amplifies the roll motion. This indicates that not only can the eddy making effect damp out the roll motion, it can also increase the roll motion.

가로세로비에 따른 날개 하부 유동장의 공기역학적 영향 (Aerodynamic Effect on the Flow Field under the Wing with Varying Aspect Ratio)

  • 조철영;박종호
    • 한국추진공학회지
    • /
    • 제20권2호
    • /
    • pp.94-101
    • /
    • 2016
  • 본 논문에서는 날개의 가로세로비 변화가 날개 하부 유동장에 미치는 공기역학적 영향을 압력분포 측정과 입자영상속도계(PIV)를 이용하여 조사하였다. PIV 측정결과를 이용하여 파일런 주변 유동장의 속도변화를 레이놀즈수 $1.384{\times}10^5$$2.306{\times}10^5$의 조건에서 속도 성분별로 각각 분석하였다. 파일런으로부터 날개의 끝단이 시위 길이의 80% 만큼 떨어진 가로세로비 4.8의 경우, 날개 끝단으로부터의 끝단 와류의 영향이 날개 아랫면의 표면압력을 낮아지게 하고, 날개 끝단 주변의 흐름을 가속시킴으로써 날개 하부의 파일런 주변 유동장에 영향을 미쳤다. 시험결과에서는 가로세로비가 증가함에 따라 날개 하부 유동장에 대한 날개 끝단으로부터의 공기역학적 효과는 작아지는 경향을 보였다.

전산 해석을 이용한 다중연돌의 유체유발진동 (Evaluation of Wind-Induced Vibration for Multiple Stacks Using Numerical Analysis)

  • 양광혁;박재관;김현준;백송열;박순태
    • 플랜트 저널
    • /
    • 제12권3호
    • /
    • pp.24-31
    • /
    • 2016
  • 풍진동(Wind-induced vibration)은 바람에 의해 구조물에 진동이 발생하는 현상으로써 세장비가 큰 열기기 Stack 설계시 고려해야 할 중요한 사항이다. 따라서, 국제 규격에는 풍진동에 대한 설계 인자와 각 범위에 대해 필요한 고려 사항을 정의하고 있다. 규격에 의한 설계 검증은 몇몇 인자를 이용하여 간단하게 확인이 가능하다는 장점이 있는 반면, 실제 풍진동에 의한 영향을 정량적으로 평가하지 않기 때문에 실제 필요한 것보다 과도한 설계를 요구할 수 있다는 단점이 있다. 또한 여러 제약조건으로 Code 상의 요구조건을 만족하지 못하는 경우 실제 시스템의 거동을 예측할 수 없다는 단점이 있다. 이러한 점을 보완하기 위해 CFD 와 FEM 등의 수치적 해석 방법을 통해 풍진동이 실제 Stack에 미치는 영향을 해석하여 설계 적정성을 검증하여 Code 상의 요구 조건과 비교하였다.

  • PDF

자동차의 주행 성능에 미치는 리어 디퓨저 크기의 영향 (Effects of Rear Diffuser Size on the Driving Performance of a Passenger Car)

  • 이교우
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.655-661
    • /
    • 2019
  • 본 연구는 차량용 리어 디퓨저의 시작 위치에 따른 주행 성능 변화를 분석하고자 하였다. 이를 위해 CATIA 3D 설계 프로그램을 이용하여 상용 SUV 차량을 참고하여 차량을 모델링하고 뒤 타이어를 기준으로 300, 400, 500 mm 떨어진 위치부터 리어 디퓨저가 시작되도록 설계했다. 그리고 유동 해석 프로그램인 Fluent를 이용해 차량 주행속도가 60km/h, 100km/h, 140km/h 일 경우를 조건으로 하여 유동해석 후 양력과 항력의 변화를 분석하고 공기의 유선 변화를 확인했다. 해석 결과, 리어 디퓨저는 시작 위치에 상관없이 디퓨저가 없는 경우에 비해 양력과 항력을 감소시켰다. 이는 리어 디퓨저가 있을 경우 공기가 차량 하면부를 지나 후면부로 빠져나올 때 발생하는 박리 현상을 억제하여 와류 현상을 감소시키기 때문이다. 또한 본 연구에서는 SP 400의 조건일 때 양력이 가장 작았고 양력 감소 효과도 가장 좋았기 때문에 주행 중 타이어의 접지력을 최대로 확보할 수 있어서 이 경우를 최적의 조건으로 결정하였다.