• 제목/요약/키워드: Separation Vortex

검색결과 253건 처리시간 0.024초

2차원 정방형 캐비티유동장의 비정상특성 (Unsteady Characteristics of a Two-Dimensional Square Cavity Flow)

  • 이영호;최장운;도덕희
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.622-632
    • /
    • 1995
  • The present numerical study is aimed to investigate time-dependent characteristics of a two-dimensional lid-driven square cavity flow of three high Reynolds numbers, $7.5{\times}10^3$, $10^4$ and $3{\times}10^4$. A conservative convection term on irregular grids was adopted by renewing the MAC type difference schemes on regular grids. Relaxation of velocity and pressure is implemented by SOLA algorithm. In case of $Re=7.5{\times}10^3$, flow behavior converges to steady state after a transient period. But for $Re=10^4$, periodic unsteady sinusoidal fluctuation of local velocity and kinetic energy is found and continuous movements of small eddies in the secondary flow regions are also discovered. Random generation of eddies and their active migrating behavior are detected for $Re=3{\times}10^4$, resulting in complete unsteady and non-linear flow characteristics. And, an organized structure similar to a Moffat vortex is also observed from the time-mean flow patterns. Furthermore, a typoon-like vortex(TLV) appears intemittently and rotates along the separation regions and boundary layers.

  • PDF

Applied Koopmanistic interpretation of subcritical prism wake physics using the dynamic mode decomposition

  • Cruz Y. Li;Xisheng Lin;Gang Hu;Lei Zhou;Tim K.T. Tse;Yunfei Fu
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.191-209
    • /
    • 2023
  • This work investigates the subcritical free-shear prism wake at Re=22,000 by the Koopman analysis using the Dynamic Mode Decomposition (DMD) algorithm. The Koopman model linearized nonlinearities in the stochastic, homogeneous anisotropic turbulent wake, generating temporally orthogonal eigen tuples that carry meaningful, coherent structures. Phenomenological analysis of dominant modes revealed their physical interpretations: Mode 1 renders the mean-field dynamics, Modes 2 describes the roll-up of the Strouhal vortex, Mode 3 describes the Bloor-Gerrard vortex resulting from the Kelvin-Helmholtz instability inside shear layers, its superposition onto the Strouhal vortex, and the concurrent flow entrainment, Modes 6 and 10 describe the low-frequency shedding of turbulent separation bubbles (TSBs) and turbulence production, respectively, which contribute to the beating phenomenon in the lift time history and the flapping motion of shear layers, Modes 4, 5, 7, 8, and 9 are the relatively trivial harmonic excitations. This work demonstrates the Koopman analysis' ability to provide insights into free-shear flows. Its success in subcritical turbulence also serves as an excellent reference for applications in other nonlinear, stochastic systems.

2단식 Weis-Foghg형 선박 추진기구의 유동장 특성계산 (Flowfield Calculation for Ship's Propulsion Mechanism of Two-Stage Weis-Fogy Type)

  • 노기덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.371-380
    • /
    • 1998
  • The flow patterns and dynamic properties of ship's propulsion mechanism of two-stage Weis-Fogh type are studied by the discrete vortex method. In order to study the effects of the interaction of the two wings two cases of the phase differences of the wing's motion are considered the same phase and the reverse phase. The flow patterns by simulations correspond to the photographs obtained by flow visualization and flowfield of the propulsion mechanism which is unsteady and complex is clearly visualized by numerical simulations. The time histories of the thrust an the drag coefficients on the wings are also calculated and the effects of the interaction of the two wings are numerically clarified.

  • PDF

돌출된 표면 위의 충류유동에 대한 전산 해석적 연구 (I) -유동 해석- (Numerical Study of Laminar Flow over a Protruding Surface (I) - Flow Analysis -)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1418-1425
    • /
    • 1999
  • Flow over a protruding surface is investigated using numerical simulation. We consider flow between two parallel plates with a cube mounted on one side of the channel. As the flow approaches the cube, the adverse pressure gradient produces three-dimensional boundary-layer separation, resulting In the formation of horseshoe vortices. The objective of our study is to clarify both the steady and the unsteady characteristics of the vortex system. As the Reynolds number increases, the structure of the vortices near the cube becomes complex and the number of vortices increases. The distribution of skin friction on the cube-mounted wall reflects the effect of the horseshoe vortices. All these results are consistent with the experimental findings currently available.

Energy-efficient flow control around blunt bodies

  • Yurchenko, Nina F.
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.15-25
    • /
    • 2014
  • The developed concept of smart flow control based on turbulence scale modification was applied to control a flow around a circular cylinder. The concept was realized using arrays of vortex-generators regularly spaced along a cylinder generatrix with a given step. Mechanical and thermal vortex-generators were tested, the latter having been based on the localized surface heating or plasma discharges initiated with microwave radiation near the surface. Thus depending on a particular engineering solution, flow transport properties could be modified in passive or active ways. Matched numerical and experimental investigations showed a possibility to delay flow separation and, accordingly, to improve the aerodynamic performance of blunt bodies.

직경 8mm Vortex Tube의 길이변화에 따른 에너지분리 특성 (Energy Separation Characteristics of 7mm Diameter Vortex Tube according to the Length Variation)

  • 문송현;김창수;이영선;김상우;박성영
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 추계학술논문집 2부
    • /
    • pp.596-599
    • /
    • 2011
  • 볼텍스 튜브는 고압의 가스를 이용하여 고온 가스와 저온 가스를 분리하거나 입자상 물질의 분리에 사용할 수 있는 장치이다. 본 연구에서는 직경 8mm 볼텍스 튜브의 길이변화가 에너지분리 특성에 미치는 영향을 실험을 통하여 분석하였다. 결론적으로 튜브길이 변화에 따른 영향력은 미미하였으나, 그 중 가장 짧은 튜브길이 64mm에서 고온 출구 측의 온도차가 가장 우수한 성능을 나타내었다. 반면, 저온 출구 측에서는 거의 영향을 미치지 못하는 것을 확인하였다. 본 연구는 볼텍스 튜브의 기초설계자료로 활용될 예정이다.

  • PDF

고받음각에서 원뿔형 물체 주위에 발생하는 정상상태 비대칭 와류의 수치해석 (NUMERICAL ANALYSIS FOR STEADY ASYMMETRIC VORTEX OF CONE AT HIGH ANGLE OF ATTACK)

  • 박미영;박수형;이재우;변영환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.171-176
    • /
    • 2007
  • Supersonic viscous flow over a 5 degree half angle cone studied computationally with three-dimensional Navier-Stokes equations. Steady asymmetric solutions of 5-deg half angle cone show that the asymmetric flow separation is caused by convective instability. The angle of attack, Reynolds number, and Mach number affected the side force variation that is caused by asymmetric vortical flow.

  • PDF

Weis-Fogh형 선박 추진기구의 역학적 특성계산 (Numerical calculation of the dynamic properties of Weis-Fogh type ship's propulsion mechanism)

  • 노기덕
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1518-1526
    • /
    • 1997
  • The dynamic properties of a ship's propulsion mechanism of Weis-Fogh type are studied by the discrete vortex method. The wing in the channel is approximated by a finite number of bound vortices and free vortices representing the separated flow are introduced from the trailing edge of the wing. The time histories of the thrust, the drag, and the moment acting on the wing are calculated, including the unsteady force due to the change of strength of the bound vortices. These calculated results show a similar tendency to the experimental ones qualitatively and the dynamic properties of this propulsion mechanism are numerically clarified.

고해상도수치기법에 의한 원형실린더 주위의 3차원 후류유동 특성연구 (High order computation on the three dimensional wakes past a circular cylinder)

  • 이상수;김재수;김태수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.622-625
    • /
    • 2008
  • While the research for flow over a circular cylinder has been actively carried out up to the present, it has been known that the flow has not been clarified even now. Various complex flow and aero-acoustic characteristics exist around a circular cylinder such as flow separation, wake and pressure wave propagation. In this paper, research was carried out for wake flow and aeroacoustics over a circular cylinders by using high order, high resolution techniques that are used in two dimensional aero- acoustic analysis. OpenMP parallel processing method was used. For the numerical result, the periodic characteristic of Strouhal Number due to vortex shedding was comparatively analyzed with other experiment values and two dimensional numerical results.

  • PDF

정지된 상류의 원형실린더 사이의 편심률이 후방실린더의 열전달에 미치는 영향 (Effects of Eccentric Ratio Between Stationary Upstream Circular Cylinders on Heat Transfer of a Heated Downstream Cylinder)

  • 유갑종;박철우;장충선
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1449-1458
    • /
    • 2004
  • The influence of eccentric(=staggeredness) ratio between stationary upstream circular cylinders on heat transfer characteristics of a heated downstream circular cylinder installed in a channel was investigated experimentally. In order to enhance the heat transfer rate of the heated downstream cylinder surface, we have changed the configuration of upstream cylinder. As a result, we were able to obtain local time-averaged convective heat transfer enhancement of the heated cylinder by the relative replacement of upstream cylinder. This is basically attributed to the mean flow structure change, such as flow separation, vortex shedding, and recirculation of the upstream cylinder including the reattachment and new thermal boundary developed at the downstream cylinder which are the results of the increase of the staggeredness ratio.