• Title/Summary/Keyword: Separation Vortex

Search Result 253, Processing Time 0.023 seconds

The Effect of Scaling of Owl's Flight Feather on Aerodynamic Noise at Inter-coach Space of High Speed Trains based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • An analysis and design method for reducing aerodynamic noise in high-speed trains based on biomimetics of noiseless flight of owl is proposed. Five factors related to the morphology of the flight feather have been selected, and the candidate optimal shape of the flight feather is determined. The turbulent flow field analysis demonstrates that the optimal shape leads to diminished vortex formation by causing separation of the flow as well as allowing the fluid to climb up along the surface of the flight feather. To determine the effect of scaling of the owl's flight feather on the noise reduction, a two-fold and a four-fold scaled up model of the feather are constructed, and the numerical simulations are carried out to obtain the aerodynamic noise levels for each scale. Original model is found to reduce the noise level by 10 dBA, while two-fold increase in length dimensions reduces the noise by 12 dBA. Validation of numerical solution using wind tunnel experimental measurements is presented as well.

  • PDF

Interaction between Turbulent Boundary Layer and Wake Behind an Elliptic Cylinder at Incidence (앙각을 가진 타원형 실린더 후류와 평판경계층의 상호작용에 대한 연구)

  • Choi, Jae-Ho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.976-983
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angle of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder due to the presence of a ground plate nearby.

A method for predicting the aerodynamic performance of low-speed airfoils (저속익형의 공기역학적 성능예측의 한 방법)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System (Mud handling system 내 cyclone separator의 집진효율 추정을 위한 공기-분체의 CFD 시뮬레이션)

  • Jeon, Gyu-Mok;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.42-49
    • /
    • 2019
  • Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Computational Fluid Analysis for Otter Boards ( 1 ) - Pattern of Fluid Flow Besides Otter Board - (전개판에 대한 수치해석 ( 1 ) - 전개판 주위에서의 유체흐름의 패턴 -)

  • Ko, Kwan-Soh;Kwon, Byeong-Guk;Ro, Ki-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.333-340
    • /
    • 1990
  • The authors carried out a visiualizational model test by the hydrogen bubble method to examine the pattern of the fluid flow besides the simple camber type and plane type otter board in circulation water channel. The experimental conditions are velocity of flow 0.05 and 0.1m/sec, angle of attack 0$^{\circ}$~45$^{\circ}$(5$^{\circ}$step). The results obtained are as follows: 1. In the case of the simple camber type otter board located angle of attack 25$^{\circ}$, vortex at the leading edge was geneated at 1/2 of chord length. 2. Size of the vortex generated in the trailing edge was about 2~3 times larger then that of the leading edge. 3. In the case of the simple camber type otter board located angle of attack 30$^{\circ}$, separation of stream-line at leading edge was generated at 1/3 of chord length. 4. Nearest stream-line in the back side of the simple camber type otter board was bent in the direction of otter board when the angle of attack was 25$^{\circ}$ and 30$^{\circ}$, and in the case of plane type otter board was expanded outside of the flow direction. 6. Area separated of the simple camber type otter board at the angle of attack 30$^{\circ}$ was smaller then that of plane type otter board. 7. Flow speed in the back side of the simple camber type otter board was about 1.4 times faster then that in the front side, and in the case of the plane otter board about 1.2 times faster.

  • PDF

Impact of the lateral mean recirculation characteristics on the near-wake and bulk quantities of the BARC configuration

  • Lunghi, Gianmarco;Pasqualetto, Elena;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.115-125
    • /
    • 2022
  • The high-Reynolds number flow around a rectangular cylinder, having streamwise to crossflow length ratio equal to 5 is analyzed in the present paper. The flow is characterized by shear-layer separation from the upstream edges. Vortical structures of different size form from the roll-up of these shear layers, move downstream and interact with the classical vortex shedding further downstream in the wake. The corresponding mean flow is characterized by a recirculation region along the lateral surface of the cylinder, ending by mean flow reattachment close to the trailing edge. The mean flow features on the cylinder side have been shown to be highly sensitive to set-up parameters both in numerical simulations and in experiments. The results of 21 Large Eddy Simulations (LES) are analyzed herein to highlight the impact of the lateral mean recirculation characteristics on the near-wake flow features and on some bulk quantities. The considered simulations have been carried out at Reynolds number Re=DU_∞/ν=40 000, being D the crossflow dimension, U_∞ the freestream velocity and ν the kinematic viscosity of air; the flow is set to have zero angle of attack. Some simulations are carried out with sharp edges (Mariotti et al. 2017), others with different values of the rounding of the upstream edges (Rocchio et al. 2020) and an additional LES is carried out to match the value of the roundness of the upstream edges in the experiments in Pasqualetto et al. (2022). The dimensions of the mean recirculation zone vary considerably in these simulations, allowing us to single out meaningful trends. The streamwise length of the lateral mean recirculation and the streamwise distance from the upstream edge of its center are the parameters controlling the considered quantities. The wake width increases linearly with these parameters, while the vortex-shedding non-dimensional frequency shows a linear decrease. The drag coefficient also linearly decreases with increasing the recirculation length and this is due to a reduction of the suctions on the base. However, the overall variation of C_D is small. Finally, a significant, and once again linear, increase of the fluctuations of the lift coefficient is found for increasing the mean recirculation streamwise length.

A Study on Flow Characteristics of the Inlet Shape for the S-Duct (S-Duct 입구 형상에 따른 유동 특성에 관한 연구)

  • Lee, Jihyeong;Choi, Hyunmin;Ryu, Minhyoung;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.109-117
    • /
    • 2015
  • Aircraft needs an inlet duct to supply the airflow to engine face. A fighter aircraft that requires low radar observability has to hide the engine face in the fuselage to reduce the Radar Cross Section(RCS). Therefore, the flow path of the inlet duct is changed into S-shape. The performance of the aircraft engine is known to be influenced by the shape and the centerline curvature of the S-Duct. In this study, CFD analysis of the RAE M 2129 S-Duct has been performed to investigate the influence of aspect ratio of inlet geometry. The performance of the S-Duct is evaluated in terms of the distortion coefficient. To simulate the flow under adverse pressure gradient better, $k-{\omega}SST$ turbulence model is employed. The computational results are validated with the ARA experimental data. The secondary flow and the flow separation are observed for all computational cases, while the semi-circular geometry has been found to produce the best results.

Local Convective Mass Transfer and Flow Structure Around a Circular Cylinder with Annular Fins (환상핀이 부착된 원봉 주위의 3차원 박리 유동구조 및 물질전달 특성 해석)

  • 박태선;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2132-2146
    • /
    • 1991
  • Extensive experiments were carried out to investigate the mass transfer and flow structures around a circular cylinder with annular fins in crossflow. The naphthalene sublimation method was employed to measure the circumferential and longitudinal variations of mass transfer from the circular cylinder between annular fins and H is the height of the fin from the cylinder surface. A remarkable enhancement of mass transfer due to the horseshoe vortices was observed near the corner junction between the annular fin and circular cylinder. The present results indicate that the local circumferential Sherwood number shows the higher values on the front stagnation point. The maximum augmentation of mass transfer rate at the center of cylinder is found near L/H-0.15 due to the separation bubble along the annular fins. The secondary flows, which are the corner vortices V2 and V3 near the end wall of the annular fin, are fairly predicted from the distributions of local Sherwood number in the spanwise direction. The average Sherwood number of overall surface at L/H=0.15 is larger 2.0 times than that of without annualr fins. The correlations of total average mass transfer rate with L/H and Re$_{L}$ can also be obtained.d.