• Title/Summary/Keyword: Separation Vortex

Search Result 253, Processing Time 0.024 seconds

Experimental Study on the Energy Separation of the Vortex Tube for EGR Cooler (EGR Cooler 대체용 Vortex Tube의 에너지 분리 현상에 관한 실험적 연구)

  • Kim, Chang-Su;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold flow. Due to energy separation ability, a vortex tube can substitute for an EGR cooler of the automotive engine. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. Energy separation characteristics of the vortex tube has been tested for supply pressure, cold-out pressure, and hot-out pressure. As increasing supply pressure, energy separation effect increased. Maximum temperature exists about 0.85 of the cold-out-flow-ratio, and minimum exists about 0.35. Hot-out temperature of the vortex tube is affected by the hot-out and cold-out pressure. However, for the given conditions, cold-out temperature is independent of exit pressure change. The results from this study can be used for the basic design parameter of the EGR cooler substitute of an automotive engine.

Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation (국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석)

  • 정용만;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE (풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계)

  • Jeong, Jae-Ho;Yoo, Cheol;Lee, Jung-Sang;Kim, Ki-Hyun;Choi, Jae-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

An Experimental Study on the Energy Separation in the Geometric Setup of a Low Pressure Vortex Tube (저압용 vertex tube의 기하학적형상에 따른 에너지 분리특성에 관한 실험적 연구)

  • 오동진;류정인
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.276-282
    • /
    • 2002
  • The process of energy separation in a low Pressure vortex tube with compressed air as a work-ing medium is studied in detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in a vortex tube provide useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. Analysis of the results enabled to find the optimum length of the vortex tube, the optimum shape of the Throttle and the usefulness of the Sleeve. In this study Outer tube is used for the exhaust application. The hot gas flow is turned 180$^{\circ}$and passes the out-side of the vortex tube a second time heating it. From this geometric setup of a vortex tube He effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

The effect of the number of nozzle holes on the energy separation (보텍스튜브의 노즐홀수가 에너지분리에 미치는 영향)

  • 유갑종;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.692-699
    • /
    • 1999
  • The vortex tube is a sample device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. The phenomena of energy separation through the vortex tube were investigated experimentally, to see the effects of the number of nozzle holes on the energy separation. The experiment was carried out with the number of nozzle holes from 1 to 10 by varying inlet pressure and cold mass fraction. The experimental results were indicated that the effective number of nozzle holes for the best cooling performance was found as 4. Also, to find effective use in a given operation conditions, the temperature difference of cold air and the cooling capacity of vortex tube was compared. The result is that cooling capacity was more important than temperature difference of cold air.

  • PDF

An Experimental Study on the Energy Separation in the Ratio of Nozzle Area of a tow Pressure Vortex Tube (저압용 보텍스튜브의 노즐면적비에 따른 에너지 분리특성에 관한 실험적 연구)

  • 오동진;최정원
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 2004
  • The process of energy separation in a low pressure vortex tube with compressed air as a working medium is studied in detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of a vortex tube and the temperature distribution in a vortex tube provide useful information about the location of the stagnation point of the flow field at the axis of the vortex tube Analysis of the results enabled to find the optimum ratio of nozzle area and the optimum shape of an orifice. From this optimum geometric setup of a low pressure and big vortex tube the effectiveness of energy separation was better than a high pressure and small vortex tube.

An Experimental Study on the Energy Separation of the $100Nm^3$/hr Vortex Tube for $CO_2$ Absorption ($CO_2$ 흡수용 $100Nm^3$/hr급 Vortex Tube의 에너지분리 특성에 관한 실험적 연구)

  • Kim, Chang-Su;Han, Keun-Hee;Park, Sung-Young
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.213-219
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold gas. Due to energy and particle separation ability, a vortex tube can be used as the main component of the $CO_2$ absorption device. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. To obtain the preliminary design data, energy separation characteristics of the vortex tube has been tested for orifice diameter, nozzle area ratio, and tube length. As a result, the orifice diameter is the major factor of the vortex tube design. The nozzle area ratio and tube length have a minor effect on the energy separation performance. For Dc=0.6D, AR=0.14~0.16, and L=16D, maximum energy separation has been occurred. The result from this study can be used as the basic design data of the $100Nm^3$/hr class vortex tube applied to the $CO_2$ absorption device. Compared with the $CO_2$ absorption process containing an absorption tower, the process with a vortex tube is expected to have a huge advantage of saving the installation space and the operating cost.

A Study for Energy Separation of Vortex Tube using Air Supply System (I) - the effect of diameter of cold end orifice - (공기공급 시스템에 적용되는 Vortex Tube의 에너지 분리특성에 관한 연구(I) -저온출구 orifice의 직경변화에 의한 영향-)

  • 이병화;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.9-18
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. The phenomena of energy separation through the vortex tube was investigated experimentally. This study is focused on the effect of the diameter of cold end orifice diameter on the energy separation. The experiment was carried out with various cold end orifice diameter ratio from 0.22 to 0.78 for different input pressure and cold air flow ratio. The experimental results were indicated that there are an optimum diameter of cold end orifice for the best cooling performance. The maximum cold air temperature difference was appeared when the diameter ratio of the cold end orifice was 0.5. The maximum cooling capacity was obtained when the diameter ratio of the cold end orifice was 0.6 and cold air flow ratio was 0.7.

  • PDF

Effects of the partial admission rate and cold flow inlet-outlet ratio on energy separation of Vortex Tube (Vortex Tube의 부분유입율과 저온 입.출구비가 에너지분리 특성에 미치는 영향)

  • 김정수;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.51-59
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner for special purpose. The phenomena of energy separation through the vortex tube were investigated to see the effects of cold flow inlet-outlet ratios and partial admission rates on the energy separation experimentally. The experiment was carried out with various cold flow inlet-outlet ratios from 0.28 to 10.56 and partial admission rates from 0.176 to 0.956 by varying input pressure and cold air flow ratio. To find best use in a given cold flow inlet-outlet ratio and partial admission rate, the maximum temperature difference of cold air was presented. The experimental results were indicated that there are an optimum range of cold flow inlet-outlet ratio for each partial admission rate and available partial admission rate.

  • PDF

Energy Separation Characteristics of Single Hole Vortex Generator (단일 유로를 갖는 와류발생기의 에너지분리 특성)

  • Yu, Gap-Jong;Jang, Jun-Yeong;Choe, In-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2001
  • When vortex tubes are applied to enhance the coefficient of performance of refrigeration system, the smaller one is preferable. However, the existing vortex generator with a nozzle hole diameter of 0.5mm was not suitable due to chocking of the nozzle hole. Therefore, experimental investigation was made to find an appropriate geometry of vortex generator, which could give a comparable effect of energy separation to commercial ones without chocking problem. The tested vortex generators were tangential and spiral types, which had single inducing channel with larger cross-sectional area than that of conventional multi-hole ones. The experimental result showed that the performance of the spiral type was better than that of the tangential one. As a small size of spiral one, the diameter of cold-end orifice is proposed to an half of tube diameter for the application to refrigeration system, while cold mass fraction ratio is 0.5∼0.6 for a desirable operation.