• Title/Summary/Keyword: Separation Plane

Search Result 151, Processing Time 0.023 seconds

A Parametric Study for the Design of Flush inlet (Flush 흡입관 설계를 위한 매개변수 연구)

  • Lee J. G.;Jung S. Y.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.132-138
    • /
    • 2004
  • Flush inlet, which has been chosen for modem air vehicles to take advantage of structure compactness and small RCS, gives rise to some aerodynamic problems such as flow separation and distortion due to vortices which deteriorate the performance of both inlet and engine. In this study, pressure recoveries at inlet exit plane were evaluated through numerical analyses of 3D turbulent flow for various inlet shapes and flight conditions. Inlet shape was controlled by changing ramp angle and width of throat, and effects of mass flow rate and angle of attack were investigated.

  • PDF

Flow Visualization of Turbulent Flow around a Sphere (구(球) 주위 난류유동의 정량적 가시화)

  • Jang, Young-Il;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.50-53
    • /
    • 2005
  • The turbulent flow around a sphere was investigated in a streamwise meridian plane using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5,300 and PIV measurements in a circulating water channel at Re=7,400. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. In addition, the mean flow pattern extracted by particle tracing method in water tunnel at Re= 14,500 reveals two distinct comparable toroidal(not closed) vortices in the recirculation region. The mean velocity field measured using a PIV technique demonstrates the detailed wake configuration of close symmetric recirculation and near-wake configuration with two toroidal vortices, reversed velocity zone and vorticity contours.

  • PDF

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

A Study on the Transient Hygrothermal Stresses in an Orthotropic Hollow Cylinder (직교이방성 속빈 원통에서 과도적 흡습열 응력에 관한 연구)

  • 조환기;신근용
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.110-120
    • /
    • 1999
  • Transient hygrothermal stresses in an infinitely long hollow cylinder subjected to heating in hygroscopic environments at the surfaces are studied. The equations of hygrothermoelasticity based on the plane strain assumption are formulated by considering the coupling effects between heat and moisture. A closed form solution for the transient hygrothermal stresses is obtained by using decoupling techniques and the method of separation of variables. Numerical results including distributions of temperature and moisture concentration are presented. Effects of transient hygrothermal characteristics are clearly shown in both displacements and stress distributions in the wall of hollow cylinder.

  • PDF

Dielectric Characteristics of SF$_6$ Gas in Non-uniform Fields (불평등전계중에서 SF$_6$ 가스의 절연특성)

  • 이복희;전덕규;이경옥;안창환;이창준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.334-337
    • /
    • 1997
  • This paper describes dielectric characteristics of SF$_{6}$ gas stressed by the non-oscillating and oscillating impulse voltages in inhomogeneous fields disturbed by metallic protrusion. The breakdown voltage-time (V-t) characteristics and breakdown voltage-gas pressure (V-p) characteristics and their characteristics are statistically investigated with positive and negative very fast transient overvoltages. The experiments were carried out using a needle-to-plane gap geometry in the gas pressure ranges from 0.1 to 0.5 MPa. The gap separation gas 22 mm, and the needle-shaped protrusions were made of stainless steel 10 mm in length and 1.0 mm in diameter.r.

  • PDF

Autonomous, Scalable, and Resilient Overlay Infrastructure

  • Shami, Khaldoon;Magoni, Damien;Lorenz, Pascal
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.378-390
    • /
    • 2006
  • Many distributed applications build overlays on top of the Internet. Several unsolved issues at the network layer can explain this trend to implement network services such as multicast, mobility, and security at the application layer. On one hand, overlays creating basic topologies are usually limited in flexibility and scalability. On the other hand, overlays creating complex topologies require some form of application level addressing, routing, and naming mechanisms. Our aim is to design an efficient and robust addressing, routing, and naming infrastructure for these complex overlays. Our only assumption is that they are deployed over the Internet topology. Applications that use our middleware will be relieved from managing their own overlay topologies. Our infrastructure is based on the separation of the naming and the addressing planes and provides a convergence plane for the current heterogeneous Internet environment. To implement this property, we have designed a scalable distributed k-resilient name to address binding system. This paper describes the design of our overlay infrastructure and presents performance results concerning its routing scalability, its path inflation efficiency and its resilience to network dynamics.

Drirect Numerical Simulation of Transitional Separated Flows Part II:Secondary Instability (천이박리유동의 직접수치모사 Part II:이차적 불안정성)

  • Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2973-2980
    • /
    • 1996
  • Secondary instability in an obstructed channel is investigated using direct numerical simulation. Flow geometry under consideration is a plane channel with two-dimensional thin obstacles mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. As a basic flow, we consider an unsteady periodic solution which results from Hopf bifurcation. Depending on the Reynolds number, the basic flow becomes unstable to three-dimensional disturbances, which results in a chaotic flow. Numerical results obtained are consistent with experimental findings currently available.

Phase Diagram of Spin Density Wave and $\pi$ Phase Shifted Superconductivity in the Fe Pnictide Superconductors (철 초전도체에서 스핀 밀도 파와 $\pi$ 위상 차 초전도성의 상전이 그림)

  • Lee, Na-Young;Choi, Han-Yong
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.112-117
    • /
    • 2010
  • We examine phase transition of the spin density wave and $\pi$ phase shifted superconductivity in the Fe pnictide superconductors. The phase diagram is described in the plane of the temperature T and the doping x with the combination of Ginzburg-Landau expansion of the free energy near the multi-critical temperature $T_c$ and the self-consistent numerical iterations of the gap equations. The phase separation or coexistence is determined by computing the 4-th order terms of the free energy which is confirmed by the numerical calculations. We can show the phase coexistence when the spin density wave is incommensurate. And the first order phase transition is observed near the boundary between commensurate and incommensurate spin density wave.

FLOW-INDUCED FORCES ON AN INCLINED SQUARE CYLINDER (기울어진 정방형 실린더에 작용하는 유체력)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2009
  • Numerical investigation has been carried out for laminar flow past an inclined square cylinder in cross freestream. In particular, inclination of a square cylinder with respect to the main flow direction can cause sudden shift of the separation points to other edges, resulting in drastic change of flow-induced forces on the cylinder such as Strouhal number (St) of vortex shedding, drag and lift forces on the cylinder, depending upon the inclination angle. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number on an Re-Angle plane. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards.

Experimental Investigation of Two-dimensionality of Flow around the Vertical Fence Submerged in a Turbulent Boundary Layer (난류 경계층에 잠긴 수직벽 주위 유동의 2차원성 연구)

  • Cha, Jae-Eun;Kim, Hyoung-Woo;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • An experimental investigation of the flow around a vertical fence was carried out using a PIV velocity field measurement technique. The vertical fence was embedded in a turbulent boundary layer. The instantaneous velocity fields measured at cross-sectional planes reveal complex longitudinal vortices that vary in size and strength, developing from the upstream location. In the instantaneous vorticity and velocity field data, the shear flow separated from the fence top is highly turbulent and shows unsteady flow characteristics. The topography of the ensemble averaged velocity fields, especially the separation bubble formed behind the fence, shows that the spatial distributions of streamwise velocity (U) and vertical (V) are symmetric, the spanwise velocity (W) is skew-symmetric with respect to the central xy-plane(z=0).