• 제목/요약/키워드: Separation Configurations

검색결과 61건 처리시간 0.034초

다수 비예혼합 화염의 안정화 특성 (Stability Enhancement by the Interaction of Diffusion Flames)

  • 김진선;이병준
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1420-1426
    • /
    • 2003
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes and kind of fuels. Four nozzle arrangements - cross 5, matrix 8, matrix 9 and circle 8 nozzles - are used in the experiment. There are many parameters affecting flame stability in multi-nozzle flames such as nozzle separation distance, fuel flowrates and nozzle configuration etc. Key factors to enhance blowout limit are the nozzle configuration and the existence of center nozzle. Even nozzle exit velocity equal 204 m/s, flame is not extinguished when there is not a center nozzle and s/d=15.3∼27.6 in matrix-8 and circular-8 configurations. At these conditions, recirculation of burnt gas is related with stability augmentation. Fuel mole fraction measurements using laser induced fluorescence reveal lifted flame base is not located at the stoichiometric contour.

KSR-III 추진기관 추진제 공급배관 수치해석 (Numerical Analysis of KSR-III Main Propulsion System Feedlines)

  • 조인현;오승협;강선일;김용욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.276-281
    • /
    • 2001
  • The KSR-III Main Propulsion System configuration of the liquid oxygen (LOX) feed line is analyzed. This feed line includes a tighter radius and cavitation venturi for flow mass flow-rate passive control. There were concerns that these configurations might generate a great flow distortion at the engine interface. Also both the pressure drop at the feed line and any presence of separation area are a great concern according to the propellant flow. To resolve these issues, a computational fluid dynamic analysis was conducted to determine the flow field in the LOX feed lines.

  • PDF

프로펠러와 고양력 장치와의 공력간섭에 대한 수치해석 연구 (NUMERICAL STUDY OF PROPELLER AND HIGH LIFT DEVICE AERODYNAMIC INTERFERENCES)

  • 박영민;김철완;정진덕;이해창
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.47-54
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially propeller effect on the wing surface is much more dominant when aircrafts are in landing or take-off conditions. In the present paper, three dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out for medium sized turboprop aircraft. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion between moving and static bodies. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift by eliminating local flow separation region and this enhancement was more dominant with high lift device.

리어제트 항공기 날개의 천음속 공탄성해석 (TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL)

  • 트란탄도안;김동현;김요한
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Two-dimensional Chiral Honeycomb Structures of Unnatural Amino Acids on Au(111)

  • Yang, Sena;Jeon, Aram;Lee, Hee-Seung;Kim, Sehun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.191.1-191.1
    • /
    • 2014
  • Crystallization has become the most popular technique for the separation of enantiomers since the Pasteur's discovery. To investigate mechanism of crystallization of chiral molecules, it is necessary to study self-assembled structures on two-dimensional surface. Here, we have studied two-dimensional self-assembled structures of an unnatural amino acid, (S)-${\beta}$-methyl naphthalen-1-${\gamma}$-aminobutyric acid (${\gamma}^2$-1-naphthylalanine) on Au(111) surface at 150 K using scanning tunneling microscopy (STM). At initial stage, we found two chiral honeycomb structures which are counter-clockwise and clockwise configurations in one domain. The molecules are arranged around molecular vacancies, dark hole. By further increasing the amounts of adsorbed ${\gamma}^2$-1-naphthylalanine, a well-ordered square packed structure was observed. In addition, we found the other structure that molecules were trapped in the pore of the hexagonal molecular assembly.

  • PDF

비즈니스 제트 항공기 날개의 천음속 공탄성 해석 (Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model)

  • 김요한;김동현;트란탄도안
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

An Improvement of Closed-Form Formula for Mutual Impedance Computation

  • Son, Trinh-Van;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Shin, Jae-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제13권4호
    • /
    • pp.240-244
    • /
    • 2013
  • In this paper, we present an improvement of a closed-form formula for mutual impedance computation. Depending on the center-to-center spacing between two rectangular microstrip patch antennas, the mutual impedance formula is separated into two parts. The formula based on synthetic asymptote and variable separation is utilized for spacings of more than 0.5 ${\lambda}_0$. When the spacing is less than 0.5 ${\lambda}_0$, an approximate formula is proposed to improve the computation for closely spaced elements. Simulation results are compared to computational results of mutual impedances and mutual coupling coefficients as functions of normalized center-to-center spacing in both E- and H-plane coupling configurations. A good agreement between simulation and computation is achieved.

A Study on the Store Compliance Verification for KT-1P Aircraft

  • Kim, Dae-wook;Kim, Chan-jo;Wu, Bong-gil
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.87-91
    • /
    • 2015
  • KT-1P for the Peru Air Force will be used as a utility aircraft with upgraded avionics equipment and arming capability based on KT-1 and KA-1. KT-1P should be shown for compatibility of new store loading configurations loaded with dispenser, bomb, and rocket based on aircraft-store compatibility test and evaluation procedures before KT-1P is operated as a light attack aircraft. The weapon system ground test for installation and flight test for envelope expansion including store separation are described in this paper, which was performed referring 'seek eagle program' under MIL-HDBK-1763 and MIL-HDBK-244A.

Hydrogen Production by Photoelectrochemical Water Splitting

  • Seo, H.W.;Kim, J. S.
    • Applied Science and Convergence Technology
    • /
    • 제27권4호
    • /
    • pp.61-64
    • /
    • 2018
  • The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.

고가궤도에 근접한 자기부상열차 형상 주위의 3차원 난류유동에 대한 수치해석 (Computational Analysis of Three-Dimensional Turbulent Flow Around Magnetically Levitated Train Configurations in Elevated Track Proximity)

  • 맹주성;양시영
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.9-25
    • /
    • 1994
  • In the present study, the Reynolds-averaged Navier-Stokes equations, together with the equations of the $k-{\varepsilon}$ model of turbulence, were solved numerically in a general body-fitted coordinate system for three-dimensional turbulent flows around the six basic shapes of the magnetically levitated train(MAGLEV). The numerical computations were conducted on the MAGLEV model configurations to provide information on shapes of this type very near the elevated track at a constant Reynolds number of $1.48{\times}10^{6}$ based on the body length. The coordinate system was generated by numerically solving a set of Poisson equations. The convective transport equations were discretized using the finite-analytic scheme which employed analytic solutions of the locally-linearized equations. A time marching algorithm was employed to enable future extensions to be made to handle unsteady and fully-elliptic problems. The pressure-velocity coupling was treated with the SIMPLER-algorithm. Of particular interests were wall effect by the elevated track on the aerodynamic forces and flow characteristics of the six models calculated. The results indicated that the half-circle configuration with extended sides and with smooth curvature of sides was desirable because of the low aerodynamic forces and pitching moment. And it was found that the separation bubble was occured at wake region in near the elevated track.

  • PDF