• Title/Summary/Keyword: Separated bubble

Search Result 43, Processing Time 0.021 seconds

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

Flow Characteristics of the Boundary Layer Developing over a Turbine Blade Suction Surface (터빈 동익 흡입면에서 발달하는 경계층의 유동특성)

  • Chang, Sung Il;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.795-803
    • /
    • 2015
  • The boundary layer developing over the suction surface of a first-stage turbine blade for power generation has been investigated in this study. For three locations selected in the region where local thermal load changes dramatically, mean velocity, turbulence intensity, and one-dimensional energy spectrum are measured with a hot-wire anemometer. The results show that the suction-surface boundary layer suffers a transition from a laminar flow to a turbulent one. This transition is confirmed to be a "separated-flow transition", which usually occurs in the shear layer over a separation bubble. The local minimum thermal load on the suction surface is found at the initiation point of the transition, whereas the local maximum thermal load is observed at the location of very high near-wall turbulence intensity after the transition process. Frequency characteristics of turbulent kinetic energy before and after the transition are understood clearly from the energy spectrum data.

Effects of Freestream Turbulence Intensity on the Flow Past a Circular Cylinder (원형단면 실린더를 지나는 유동에 대한 자유류 난류강도의 영향)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo;Lee, Sung-Su;Lee ,Joon-Sik;Lee, Sang-San
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.953-960
    • /
    • 2004
  • In this study, the effects of freestream turbulence intensity on laminar-turbulent transition of separated shear layers in the wake of a circular cylinder are investigated using an immersed boundary method and LES. It is shown that the present numerical results without freestream turbulence for Re=3,900 based on bulk mean velocity and the cylinder diameter are in good agreement with other authors' experimental observations and numerical results, verifying our numerical methodology. Then a 'prescribed power spectrum' method is imposed to generate isotropic turbulence at the inlet of the computational domain at each time step. The principal effects of freestream turbulence intensity on flow statistics are investigated for Re=3,900. Statistical study reveals that the Reynolds stresses in the near-wake region gradually increase, and transition occurs further upstream, as the turbulence intensity increases. On the other hand, the bubble size behind the cylinder decreases as the turbulence intensity increases, which indicates that the freestream turbulence helps mean velocity be quickly recovered.

COMPARISON OF TURBULENCE MODELS ON ANALYSIS OF AIRCRAFT CONFIGURATIONS AT TRANSONIC SPEED (천음속 영역에서 항공기 유동해석에 미치는 난류모델의 영향 비교)

  • Huh, J.;Lee, N.;Lee, S.;Kwak, E.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, we study the effect of various turbulence models by comparing the aerodynamic characteristics and the flow patterns computed for aircraft models. An in-house CFD solver, MSAPv, that solves the three dimensional RANS equations with the turbulence model equations is used. The turbulence models used in this study are the Spalart-Allmaras model, Menter's $k-{\omega}$ SST model, Coakley's $q-{\omega}$ model, and Huang and Coakley's $k-{\varepsilon}$ model. DLR-F6 WB and WBNP configurations are selected for the study. We concentrate on the separated flow pattern variations with the turbulence models at the wing-body junction and the wing-pylon junction as well as drag polar curves.

Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations (부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산)

  • 강동진;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.755-761
    • /
    • 1987
  • Two-Dimensional incompressible laminar boundary layer with the reversed flow region is computed using the parially parabolized Navier-Stokes equations in primitive variables. The velocities and the pressure are explicity coupled in the difference equation and the resulting penta-diagonal matrix equations are solved by a streamwise marching technique. The test calculations for the trailing edge region of a finite flat plate and Howarth's linearly retarding flows demonstrate that the method is accurate, efficient and capable of predicting the reversed flow region.

Quench characteristics of YBCO thin films using magnetic field source for superconducting fault current limiters

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Oh, I.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.11-14
    • /
    • 2004
  • YBCO thin films have good characteristics for current limiting materials due to compact size and high current carrying capability. But the irregularities and the extreme thin thickness of YBCO films cause some difficulties in simultaneous quench and thermal shock protection. In order to solve these problems, vertical magnetic field generated from solenoid coil was applied to the YBCO element. And also to minimize the inductance caused by the serial connection of magnetic field source with superconducting elements, magnetic field source was separated from the power lines adapting protective current transformer. In this study, electric field-current (E-I) and quench characteristics of YBCO films were analyzed both by electrical measuring method and observations of bubble propagation. From the experiment results, it was revealed that the magnetic fields generated by surrounding coil could induce the uniform quench distribution for all stripes of current limiting units and finally simultaneous quenches were realized in all serial connection of YBCO elements. In addition, the separation of magnetic field source form electrical network could be good solution for simultaneous quench of YBCO films without any unnecessary effect caused by serial connection.

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (III) - Phase Average - (PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (III) - 위상평균유동장 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1527-1534
    • /
    • 2001
  • Phase averaged velocity fields in the near wake region behind a square cylinder have been (successfully) obtained using randomly sampled PIV data sets. The Reynolds number based on the flow velocity and the vertex height was 3,900. To identify the phase information, we examined the magnitude of circulation and the center of peak vorticity. The center of vorticity was estimated from lowpass filtered vorticity contours (LES decomposition) adopting a sub-pixel searching algirithm. Due to the sinusoidal nature of firculation which is closely related to the instantaneous vorticity, the location of peak voticity fits well with a sine curve of the circulation magnitude. Conditionally-averaged velocity fields represent the barman vortex shedding phenomenon very well within 5 degrees phase uncertainty. The oscillating nature of the separated shear layer and the separation bubble at the top surface are clearly observed. With the hot-wire measurements of Strouhal frequency, we found thats the convection velocity changes its magnitude very rapidly from 25 to 75 percent of the free stream velocity along the streamwise direction when the flow passes by the recirculation region.

Numerical Modeling of Free Surface Flow over a Broad-Crested Rectangular Weir (사각형 광정위어를 통과하는 자유수면 흐름 수치모의)

  • Paik, Joongcheol;Lee, Nam Joo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.281-290
    • /
    • 2015
  • Numerical simulations of free surface flow over a broad-crested rectangular weir are conducted by using the volume of fraction (VOF) method and three different turbulence models, the k-${\varepsilon}$, RNG k-${\omega}$ and k-${\omega}$ SST models. The governing equations are solved by a second-order accurate finite volume method and the grid sensitivity study of solutions is carried out. The numerical results are evaluated by comparing the solutions with experimental and numerical results of Kirkgoz et al. (2008) and some non-dimensionalized experimental results obtained by Moss (1972) and Zachoval et al. (2012). The results show that the present numerical model can reasonably reproduce the experimental results, while three turbulent models yield different numerical predictions of two distinct zones of flow separation, the first zone is in front of the upstream edge of the weir and the second is created immediately behind the upstream edge of the weir where the flow is separated to form the separation bubble. The standard k-${\varepsilon}$ model appears to significantly underestimate the size of both separation zones and the k-${\omega}$ SST model slightly over-estimates the first separation zone in front of the weir. The RNG k-${\varepsilon}$ model predicts both separation zones in overall good agreement with the experimental measurement, while the k-${\omega}$ SST model yields the best numerical prediction of separation bubble at the upstream edge of the weir.

The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (II) - Dynamic Behavior of Laser Welding Phenomenon and Composition of Porosity and Vaporized-particle - ($6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성 (II) - 레이저 용접현상의 동적거동과 기공 및 증발입자의 조성 -)

  • Kim, Jong-Do;Park, Hyun-Joon
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2006
  • It has been reported that good quality weld beads are not easily obtained during the $CO_2$ CW laser welding of primer coated plate. However, by introducing a small gap clearance in the lap position, the zinc vapor can escape through it and sound weld beads can be acquired. Therefore, this study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of porosity. But Zn was not found from the dimple structure fractured at the weld metal. By analyzing of vaporizing element in laser welding, a component ratio of Zn was decreased by introducing a small gap clearance. Therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and romaines as porosity.

Development of Solid Separator for Selective Solid Circulation in Two-interconnected Fluidized Beds System (2탑 유동층 시스템에서 선택적 고체순환을 위한 고체분리기 개발)

  • Ryu, Ho-Jung;Park, Young Cheol;Lee, Seung-Yong;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.195-202
    • /
    • 2009
  • As a basic research of developing two-interconnected fluidized beds system for selective solid circulation, a solid separator was developed to separate fine and coarse particles by means of particle size difference with particle size separation system equipped with metal screen. The effects of gas velocity, height of solid separator, and separation area on the solid separation rate were investigated as well. The solid separation rate increased as the gas velocity, height of solid separator, and separation area increased. As the gas velocity and height of the solid separator increased, the variation of the solid separation rate was consistent with that of bubble size. Consequently, coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 4.4 to 127 g/min. We also proposed two interconnenced fluidized beds system for sorption enhanced water-gas shift process equipped with the developed solid separator.