Abstract
YBCO thin films have good characteristics for current limiting materials due to compact size and high current carrying capability. But the irregularities and the extreme thin thickness of YBCO films cause some difficulties in simultaneous quench and thermal shock protection. In order to solve these problems, vertical magnetic field generated from solenoid coil was applied to the YBCO element. And also to minimize the inductance caused by the serial connection of magnetic field source with superconducting elements, magnetic field source was separated from the power lines adapting protective current transformer. In this study, electric field-current (E-I) and quench characteristics of YBCO films were analyzed both by electrical measuring method and observations of bubble propagation. From the experiment results, it was revealed that the magnetic fields generated by surrounding coil could induce the uniform quench distribution for all stripes of current limiting units and finally simultaneous quenches were realized in all serial connection of YBCO elements. In addition, the separation of magnetic field source form electrical network could be good solution for simultaneous quench of YBCO films without any unnecessary effect caused by serial connection.