• Title/Summary/Keyword: Separated Flow

Search Result 726, Processing Time 0.021 seconds

A method for predicting the aerodynamic performance of low-speed airfoils (저속익형의 공기역학적 성능예측의 한 방법)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

Utilization Analysis by Tool Allocation Method of the FMS (FMS의 공구배분법에 가동률 분석)

  • 허성관;하정진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 1993
  • A completely separated functional FMS (Flexible Manufacturing Systems), or a partly separated functional FMS, should be constructed because a fully functional FMS, where each machine has all of the tools required for procesing various kinds of jobs, is superflous and wasteful in meeting the multiform and changeable demands of comsumers in a flexible manner. The effective methods are presented in this study for allocating the tools to each machine in a two-machine flow shop type FMS to meet the above demands and to maximize the utilization of the FMS. The methods for a completely separated functional FMS having no duplicated tools and a partly separated functional FMS having some duplicated tools are proposed in this paper. Some simulation results clarify that utilization of the FMS by this methods is as high as the fully functional FMS when the number of jobs is large.

  • PDF

Improvement on Large-Eddy Simulation Technique of Turbulent Flow (난류유동의 Large-Eddy Simulation 기법의 알고리즘 향상에 관한 연구)

  • 앙경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1691-1701
    • /
    • 1995
  • Two aspects of Large-Eddy Simulation(LES) are investigated in order to improve its performance. The first one is on how to determine the model coefficient in conjunction with a dynamic subgrid-scale model, and the second one is on a wall-layer model(WLM) which allows one to skip near-wall regions to save a large number of grid points otherwise required. Especially, a WLM suitable for a separated flow is considered. Firstly, an averaging technique to calculate the model coefficient of dynamic subgrid-scale modeling(DSGSM) is introduced. The technique is based on the concept of local averaging, and useful to stabilize numerical solution in conjunction with LES of complex turbulent flows using DSGSM. It is relatively simple to implement, and takes very low overhead in CPU time. It is also able to detect the region of negative model coefficient where the "backscattering" of turbulence energy occurs. Secondly, a wall-layer model based on a local turbulence intensity is considered. It locally determines wall-shear stresses depending on the local flow situations including separation, and yields better predictions in separated regions than the conventional WLM. The two techniques are tested for a turbulent obstacle flow, and show the direction of further improvements.rovements.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Experimental Investigation on Separated Flows of Axial Flow Stator and Diagonal Flow Rotor

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki;Jin, Yingzi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.223-231
    • /
    • 2009
  • Experimental investigations were conducted for the internal flows of the axial flow stator and diagonal flow rotor. Corner separation near the hub surface and the suction surface of stator blade are mainly focused on. For the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease between near the suction surface and near the hub surface by the influence of corner wall. For the flow rate of 80-90% of the design flow rate, the corner separation of the stator between the suction surface and the hub surface is observed, which becomes widely spread for 80% of the design flow rate. At rotor outlet for 81% of the design flow rate, the low axial velocity region grows between near the suction surface of rotor and the casing surface because of the tip leakage flow of the rotor.

Flow and Heat Transfer Characteristics in a Separated Flow over Backward-facing Step and Cavity Controlled by Acoustic Excitation (음향여기에 의한 2차원 후방계단과 공동 내의 유동 및 열전달 특성 변화)

  • Jo, Hyeong-Hui;Gang, Seung-Gu;Lee, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1253-1262
    • /
    • 2001
  • Experimental study is conducted to investigate the heat/mass transfer and flow characteristics for the flow over backward-facing step and cavities. A naphthalene sublimation method has been employed to measure the mass transfer coefficients on the duct wall and LDV system has been used to obtain mean velocity profiles and turbulence intensities. Reynolds number based on the step height and free stream velocity is 20,000 and St numbers of acoustic excitations given to separated flow are 0.2 to 0.4. The spectra of streamwise velocity fluctuation show a sharp peak forcing frequency for an acoustically excited flow. The results reveal that the vortex pairing and overall turbulence level are enhanced by the acoustic excitation and a significant decrease in the reattachment length and the increased turbulence intensity are observed with the excitation. A certain acoustic excitation increases considerably the heat/mass transfer coefficient at the reattachment point and in the recirculation region. For the cavities, heat/mass transfer is enhanced by the acoustic excitation due to the elevated turbulence intensity. For the 10H cavity, the flow pattern is significantly changed with the acoustic excitation. However, for the 5H cavity, the acoustic excitation has little effect on the flow pattern in the cavity.

Dispersion in the Unsteady Separated Flow Past Complex Geometries (복합지형상에서 비정상 박리흐름에 의한 확산)

  • Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.512-527
    • /
    • 2001
  • Separated flows passed complex geometries are modeled by discrete vortex techniques. The flows are assumed to be rotational and inviscid, and a new techlnique is described to determine the stream functions for linear shear profiles. The geometries considered are the snow cornice and the backward-facing step, whose edges allow for the separation of the flow and reattachment downstream of the recirculation regions. A point vortex has been added to the flows in order to constrain the separation points to be located at the edges, while the conformal mappings have been modified in order to smooth the sharp edges and to let the separation points free to oscillate around the points of maximum curvature. Unsteadiness is imposed to the flow by perturbing the vortex location, either by displacing the vortex from the equilibrium, or by imposing a random perturbation with zero mean to the vortex in equilibrium. The trajectories of passive scalars continuously released upwind of the separation point and trapped by the recirculating bubble are numerically integrated, and concentration time series are calculated at fixed locations downwind of the reattachment points. This model proves to be capable of reproducing the trapping and intermittent release of scalars, in agreement with the simulation of the flow passed a snow cornice performed by a discrete multi-vortex model, as well as with direct numerical simulations of the flow passed a backward-facing step. The results of simulation indicate that for flows undergoing separation and reattachment the unsteadiness of the recirculating bubble is the main mechanism responsible for the intense large-scale concentration fluctuations downstream.

  • PDF

Numerical Analysis of a Tip Leakage Vortex in an Axial Flow Fan (축류홴 익단누설와류의 수치적 해석)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.404-411
    • /
    • 2003
  • Three-dimensional vortical flow and separated flow topology near the casing wall in an axial flow fan having two different tip clearances have been investigated by a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. The simulation shows that the tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction. On the casing wall, a separation line is formed upstream of the leakage vortex center due to the interference between the leakage vortex and main flow. The reverse flow is observed between the separation line and the attachment line generated downstream of the trailing edge, and increased with enlarging tip clearance. The patterns of a leakage velocity vector including a leakage flow rate are also analyzed according to two tip clearances. It is noted that the understanding of the distribution of a limiting streamline on the casing wall is very important to grasp the characteristics of the vortical flow in the axial flow fan.

  • PDF

Vasodilatation Effect of Complex Saponin Separated from Scrophulariae radix, Asparagus cochinchinensis and Liriope platyphylla Mixture Extract

  • Jung Hwan Nam;Jong Nam Lee;Su hyoung Park;Su Jeong Kim;Do Yeon Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.39-39
    • /
    • 2023
  • The purpose of this study is to investigate vasodilatation effect of complex saponin separated from Scrophulariae radix, Asparagus cochinchinensis and Liriope platyphylla mixture extract on rabbit carotid artery. In this study, to determine vasodilatation effect of complex saponin separated from Scrophulariae radix, Asparagus cochinchinensis and Liriope platyphylla mixture extract on rabbit carotid artery, arterial rings with intact or damaged endothelium were used for experiment using organ bath, and were contracted by endothelin. complex saponin, major active constituents of Scrophulariae radix, Asparagus cochinchinensis and Liriope platyphylla mixture extract, showed a moderate vasodilatation effect on the basilar arteries of rabbits. Therefore, treatment with complex saponin separated from Scrophulariae radix, Asparagus cochinchinensis and Liriope platyphylla mixture extract may selectively accelerate cerebral blood flow through dilatation of the basilar artery. Theseis result suggest a potential role of complex saponin separated from Scrophulariae radix, Asparagus cochinchinensis and Liriope platyphylla mixture extract as source of vasodilatation agent.

  • PDF

Liquid Chromatographic Determination of Preservatives in Commercial Herb Liquid Preparations (시판(市販) 생약(生藥) 액제류중(液劑類中)의 보존제(保存劑) 함량(含量))

  • Lim, Jong-Pil
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.4
    • /
    • pp.214-220
    • /
    • 1985
  • The preservatives in 32 commercial liquid preparations of crude drugs have been analyzed by using high performance liquid chromatography. Benzoic acid (BA) and p-hydroxybenzoates were separated with mobile phase of $MeOH-H_2O$ (70:30) (pH 7.0) at a flow rate of 0.9ml/min. BA, sorbic acid and dehydroacetic acid were separated with mobile phase of $MeOH-H_2O$ (40:60) (pH 4.5) at a same flow rate. In addition, the pH values of the preparations were investigated. It was found that BA was used in most of the preparations.

  • PDF