• Title/Summary/Keyword: Separate Effect Facility

Search Result 24, Processing Time 0.019 seconds

Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis (DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출)

  • Ahn, Jae-Beom;Jo, Hyun-Bin;Lee, Jin-Han;Cho, Chan-Gi;Lee, Ki-Duk;Lee, Jin;Lim, Seung-Beom;Ryo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

Evaluation of SPACE Code Prediction Capability for CEDM Nozzle Break Experiment with Safety Injection Failure (안전주입 실패를 동반한 제어봉구동장치 관통부 파단 사고 실험 기반 국내 안전해석코드 SPACE 예측 능력 평가)

  • Nam, Kyung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.80-88
    • /
    • 2022
  • The Korean nuclear industry had developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code, which adopts a two-fluid, three-field model that is comprised of gas, continuous liquid and droplet fields and has the capability to simulate three-dimensional models. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for the accident management plan of a nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification is required for the separate and integral effect experiments. Therefore, the goal of this work is to verify the calculation capability of the SPACE code for multiple failure accidents. For this purpose, an experiment was conducted to simulate a Control Element Drive Mechanism (CEDM) break with a safety injection failure using the ATLAS test facility, which is operated by Korea Atomic Energy Research Institute (KAERI). This experiment focused on the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The results of the overall system transient response using the SPACE code showed similar trends with the experimental results for parameters such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it can be concluded that the SPACE code has sufficient capability to simulate a CEDM break with a safety injection failure accident.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

Proposal for Amendment of the Basic Environmental Policy Act ('BEPA') Article 31 (환경정책기본법 제31조 무과실책임규정의 개정방안)

  • Koh, Moon-Hyun
    • Journal of Environmental Policy
    • /
    • v.8 no.4
    • /
    • pp.125-147
    • /
    • 2009
  • The Basic Environmental Policy Act (BEPA) (Law No. 4257 effective 1. August 1990) sets forth the basic policies and administrative framework for environmental preservation, leaving more detailed regulations, and emission controls to separate laws targeting air, water, and solid waste, etc. The BEPA Article 31 adopts an unprecedented strict liability standard for damages as an absolute liability. The BEPA Article 31 provides for liability as follows. If a company is alleged to have caused damage through pollution of the environment, it will be liable for damages unless it can show that the pollution did not cause damages, or that it did not actually cause pollution. If the company did cause pollution, and if the pollution is the cause for the damages in question, the company will be liable irrespective of whether it was negligent or otherwise at fault. If there are two or more companies involved in the pollution, but it is unclear which company caused the damages, all of the companies will be jointly and severally liable for the damages. In this paper, the author attempts to uncover the problems of BEPA Article 31 and then seeks desirable amendments by comparing it to the German Environmental Liability Act. First, it will be necessary to provide definitions of 'companies etc.'. Second, it will be necessary to enumerate the kinds of company facilities. Third, it will be necessary to provide exclusionary clauses on material damages. Fourth, it will be necessary to show 'presumption of cause and effect'. Fifth, it will be necessary to provide a clause on 'right to information'. Sixth, it will be necessary to provide a clause for force majeure. Seventh, it will be necessary to take measures to secure abundant liability for damages which can be caused by the owner of the facility, the potential polluter. Finally, it is appropriate that Korea now legislate an Environmental Liability Act akin to the German Environmental Liability Act.

  • PDF