• 제목/요약/키워드: Seosi

Search Result 4, Processing Time 0.02 seconds

Feces Distribution of Otter(Lutra lutra) Population in Seosi Stream (서시천에서 수달(Lutra lutra) 배설물의 분포에 관한 연구)

  • Kim, Woo Yuel;Jin, Seon Deok;Bing, Gi Chang;Park, Chi Young;Lee, Doo Pyo
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.118-127
    • /
    • 2010
  • From January to December of 2006, the distribution characteristics and density of otter(Lutra lutra ) feces were studied at Seosi stream, a tributary of Seomjin river, in Gurye-gun, Jeollanam-do. During the study period, the number of excretion site, old feces, and new feces were observed six times in seven habitat sections of the stream. As the result, 222 excretion sites, 662 old feces (converts to 718 per 60 days), and 364 new feces were observed. All of these were observed the most in January. Mean density per 500m was 26.9 for excretion sites, 88.6 for old feces, and 44.4 for new feces. Monthly changes in the number of excretion site and feces per section showed that otters have no specific preference to a habitat section of Seosi stream over the year.

A Study on The Bed Scour at Stream Bridge during Flood - In the case of Jeongjang Bridge in Gurye - (홍수시 소하천 교량에서의 하상세굴 연구 - 구례 정장교를 중심으로 -)

  • Jung, Jae-Sung;Chung, Mahn;Kim, Min-Hwan
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1075-1080
    • /
    • 2002
  • The hydrological frequency of the flood in July 2000 at Seosi stream basin in Gurye and the bed scour of the stream channel were estimated to investigate the bed scour related with Jeongjang bridge collapse. The storm over the basin in July 2000, 303mm/day was 103year frequency rainfall and the equivalent flood was 2580cms. As the results of 100year and 30year flood application, flood level 30.78~31.38m and mean velocity 3.79~4.03m/s were appeared. And the purification project of Seosi stream increased the velocity of the section near to Jeongjang bridge by the improvement of conveyance at the downstream. The local scour at pier was the major factor of bed scour at Jeongjang bridge site and the total scour at pier No.6 was increased from 2.32m to 2.45m by the purification project.

The Analysis of Soil Erosion in Water-pollutant Buffering Zone of Imha reservoir using Geo-Spatial Data (지형공간정보를 이용한 임하호 수변구역 토사유실 분석)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Park, Jin-Hyeog;Chae, Hyo-Sok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.908-912
    • /
    • 2006
  • Geology and terrain of Imha basin has a very weak characteristics to soil erosion, so much soil particles flow into Imha reservoir and bring about high density turbid water when it rains a lot. Especially, since the agricultural area of Imha basin is mainly located in river boundary, Imha reservoir has suffered from turbid water by soil erosion. Therefore, it is important to estimate the influence of soil erosion to establish efficient management of water-pollutant buffering zone for the reduction of turbid water. By applying GIS-based RUSLE model, this study can acquire 12.23% that is the ratio of soil erosion in water-pollutant buffering zone and is higher than area-ratio (9.95%) of water-pollutant buffering zone. This is why the area-ratio of agricultural district (27.24%) in water-pollutant buffering zone is higher than the area-ratio of agricultural district (14.96%) in Imha basin. Also as the result of soil erosion in sub-basin, Daegok basin shows highest soil erosion in water-pollutant buffering zone, second is Banbyeon_10 basin and last is Seosi basin.

  • PDF

The Influence Analysis of GIS-based Soil Erosion in Water-pollutant Buffering Zone (GIS기반 수변구역의 토사유실 영향 분석)

  • Lee, Geun Sang;Hwang, Eui Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.335-340
    • /
    • 2006
  • Geology and terrain of Imha basin has a very weak characteristics to soil erosion, so much soil particles flow into Imha reservoir and bring about high density turbid water when it rains a lot. Especially, since the agricultural area of Imha basin is mainly located in river boundary, Imha reservoir has suffered from turbid water by soil erosion. Therefore, it is important to estimate the influence of soil erosion to establish efficient management of water-pollutant buffering zone for the reduction of turbid water. By applying GIS-based RUSLE model, this study can acquire 12.23% that is the ratio of soil erosion in water-pollutant buffering zone and is higher than area-ratio (9.95%) of water-pollutant buffering zone. This is why the area-ratio of agricultural district (27.24%) in water-pollutant buffering zone is higher than the area-ratio of agricultural district (14.96%) in Imha basin. Also as the result of soil erosion in sub-basin, Daegok basin shows highest soil erosion in water-pollutant buffering zone, second is Banbyeon_10 basin and last is Seosi basin.