• Title/Summary/Keyword: Sentinel-2A/B

Search Result 38, Processing Time 0.151 seconds

Analysis of the Cloud Removal Effect of Sentinel-2A/B NDVI Monthly Composite Images for Rice Paddy and High-altitude Cabbage Fields (논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석)

  • Eun, Jeong;Kim, Sun-Hwa;Kim, Taeho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1545-1557
    • /
    • 2021
  • Crops show sensitive spectral characteristics according to their species and growth conditions and although frequent observation is required especially in summer, it is difficult to utilize optical satellite images due to the rainy season. To solve this problem, Constrained Cloud-Maximum Normalized difference vegetation index Composite (CC-MNC) algorithm was developed to generate periodic composite images with minimal cloud effect. In thisstudy, using this method, monthly Sentinel-2A/B Normalized Difference Vegetation Index (NDVI) composite images were produced for paddies and high-latitude cabbage fields from 2019 to 2021. In August 2020, which received 200mm more precipitation than other periods, the effect of clouds, was also significant in MODIS NDVI 16-day composite product. Except for this period, the CC-MNC method was able to reduce the cloud ratio of 45.4% of the original daily image to 14.9%. In the case of rice paddy, there was no significant difference between Sentinel-2A/B and MODIS NDVI values. In addition, it was possible to monitor the rice growth cycle well even with a revisit cycle 5 days. In the case of high-latitude cabbage fields, Sentinel-2A/B showed the short growth cycle of cabbage well, but MODIS showed limitations in spatial resolution. In addition, the CC-MNC method showed that cloud pixels were used for compositing at the harvest time, suggesting that the View Zenith Angle (VZA) threshold needsto be adjusted according to the domestic region.

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme (Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정)

  • KIm, Sangwoo;Lee, Taehwa;Chun, Beomseok;Jung, Younghun;Shin, Yongchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.274-274
    • /
    • 2021
  • 토양수분은 가뭄, 홍수, 산불 및 산사태 등 자연재해 발생에 직간접적으로 영향을 미치기 때문에, 시·공간적으로 연속적인 토양수분 관측이 필요하다. 과거에는 TDR (Time Domain Reflectometry) 관측 장비를 설치하여 토양수분의 변화를 관측하였으나, 이러한 지점관측의 경우 하나의 관측지점에서 토양수분을 관측하기 때문에 공간적인 토양수분 변화를 나타내지 못한다. 최근 이러한 문제를 해결하기 위하여 인공위성 이미지 자료를 이용한 토양수분 산정에 관한 연구가 활발히 수행되고 있다. 그러나 SMOS (Soil Moisture and Ocean Salinity), SMAP (Soil Moisture Active Passive)와 같은 다양한 위성에서 관측된 토양수분은 낮은 공간해상도로 인한 불확실성이 커지는 단점이 있다. 최근 이러한 한계를 극복하기 위하여 광학위성영상과 달리 날씨의 영향을 받지 않으며 고해상도 이미지자료를 제공하는 Sentinel-1A/B 위성을 활용하여 토양수분을 관측하는 연구가 진행되고 있다. Sentinel-1은 10m의 높은 공간해상도를 제공하지만, 1~2주 주기로 영상취득이 가능하기 때문에 재방문시기와 같은 시간해상도 문제가 발생한다. 따라서 본 연구에서는 Sentinel-1A/B SAR 기반 후방산란계수와 농촌진흥청에서 제공하는 TDR 기반 토양수분 실측값을 이용하여 우리나라 토양수분 공간분포를 산정하였다. 산정된 Sentinel-1A/B 기반 토양수분과 토양수분자료동화기법을 연계하여 토양의 수리학적 매개변수를 추출하였으며, 추출된 매개변수와 기상자료를 이용하여 장기간(2001~2018) 일별 토양수분 공간분포를 산정하였다.

  • PDF

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

Analysis of Algal Bloom Occurrence Characteristics Namyang Lake using Sentinel-2 MSI (Sentinel-2 MSI를 활용한 남양 간척담수호의 조류발생 특성 분석)

  • Wonjin Jang;Jinuk Kim;Jiwan Lee;Yongeun Park;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.56-56
    • /
    • 2023
  • 남양호는 농업용수 공급을 위해 건설된 하구 담수호로 과도한 영양물질 축적으로 인해 매년 여름 녹조류가 번성한다. 따라서 본 연구에서는 조류발생 특성을 분석하고자 식물성 플랑크톤 및 관련 분해 산물에 의해 고유 광학특성을 가지고 있는 Chlorophyll-a(Chl-a)의 추정을 통한 녹조 발생을 파악하고자 Sentinel-2 Multi Spectral Image(MSI)의 원격 반사율 광학 스펙트럼을 사용하였다. Chl-a 추정알고리즘 개발을 위하여 Sentinel-2 A, B의 교차 방문주기인 5일 간격에 맞추어 현장수질자료(2022년: 27회 2023년: 27회)를 측정하였다. Chl-a 농도는 EXO-YSI를이용하여 측정하였으며 해당기간동안 9.4 ~ 127.1 mg/L의 범위를 보였으며, Sentine-2 자료는 A, B자료에서 B1(443 nm) ~ B8A(865 nm)파장의 값을 기상조건(구름, 안개, 강수)을 고려하여 현장수질측정 위치에서 반사도를 추출하였다. 입력자료는 대기 및 방사영향을 고려해 반사도 간의 비율자료와 선행연구에서 활용된 반사도를 활용하였으며 알고리즘은 다중선형회귀분석(Multi Linear Regression Model)과 Random Forest를 활용하였다. MLR의 경우 결정계수(R2)가 학습 및 검증에서 각각 0.68, 0.59의 성능을 보였으며, RF의 경우 각각 0.94, 0.85의 성능을 보였다. 해당알고리즘으로 생성된 Chl-a 시공간농도 자료는 담수호내 조류발생 특성을 분석하고 효율적 조류관리 및 대처에 활용될 것으로 판단된다.

  • PDF

Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices (Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Jang, Wonjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • In this study, a soil moisture estimation was performed using the Water Cloud Model (WCM), a backscatter model that considers vegetation based on SAR (Synthetic Aperture Radar). Sentinel-1 SAR and Sentinel-2 MSI (Multi-Spectral Instrument) images of a 40 × 50 km2 area including the Yongdam Dam watershed of the Geum River were collected for this study. As vegetation descriptor of WCM, Sentinel-1 based vegetation index RVI (Radar Vegetation Index), depolarization ratio (DR), and Sentinel-2 based NDVI (Normalized Difference Vegetation Index) were used, respectively. Forward modeling of WCM was performed by 3 groups, which were divided by the characteristics between backscattering coefficient and soil moisture. The clearer the linear relationship between soil moisture and the backscattering coefficient, the higher the simulation performance. To estimate the soil moisture, the simulated backscattering coefficient was inverted. The simulation performance was proportional to the forward modeling result. The WCM simulation error showed an increasing pattern from about -12dB based on the observed backscattering coefficient.

Estimation of spatial soil moisture using Sentinel-1 SAR images and ANN considering antecedent precipitation (선행강우를 고려한 Sentinel-1 SAR 위성영상과 ANN을 활용한 공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Son, Moobeen;Han, Daeyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.117-117
    • /
    • 2021
  • 본 연구에서는 Sentinel-1A/B C-band SAR(Synthetic Aperture Radar) 위성영상을 기반으로 인공신경망(Artificial Neural Network, ANN) 모형을 활용해 금강 유역 상류 40×50 km2 면적에 대한 토양수분을 산정하였다. 10 m 공간 해상도의 Sentinel-1A/B SAR 영상은 8일 간격으로 2015년부터 2019년까지 5년 동안 구축하였고, SNAP(SentiNel Application Platform)을 통해 기하 보정, 방사 보정 및 잡음(Noise) 보정을 수행하고 VV 및 VH 편파 후방산란계수로 변환하였다. ANN 모형 검증자료로 TDR(Time Domain Reflectometry)로 측정된 9개 지점의 실측 토양수분 자료를 구축하였으며, 수문학적 개념인 선행강우를 고려하기 위해 동지점에 대한 강수량 자료를 구축하였다. ANN은 각 지점에 해당하는 토양 속성별로 모델링하고, 전체 기간 및 계절별로 나누어 모의하였으며, 전체 자료의 60%와 40%를 각각 훈련 및 테스트 데이터로 사용하였다. 산정된 토양수분은 상관계수(Correlation Coefficient, R)와 평균제곱근오차(Root Mean Square Error, RMSE)를 활용하여 검증을 수행할 예정이다.

  • PDF

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

A Study on the Radiometric Correction of Sentinel-1 HV Data for Arctic Sea Ice Detection (북극해 해빙 탐지를 위한 Sentinel-1 HV자료의 방사보정 연구)

  • Kim, Yunjee;Kim, Duk-jin;Kwon, Ui-Jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1273-1282
    • /
    • 2018
  • Recently, active research on the Arctic Ocean has been conducted due to the influence of global warming and new Arctic ship route. Although previous studies already calculated quantitative extent of sea ice using passive microwave radiometers, melting at the edge of sea ice and surface roughness were hardly considered due to low spatial resolution. Since Sentienl-1A/B data in Extended Wide (EW) mode are being distributed as free of charge and bulk data for Arctic sea can be generated during a short period, the entire Arctic sea ice data can be covered in high spatial resolution by mosaicking bulk data. However, Sentinel-1A/B data in EW mode, especially in HV polarization, needs significant radiometric correction for further classification. Thus, in this study, we developed algorithms that can correct thermal noise and scalloping effects, and confirmed that Arctic sea ice and open-water were well classified using the corrected dual-polarization SAR data.