• 제목/요약/키워드: Sentinel-2 위성

검색결과 132건 처리시간 0.024초

Sentinel-2 위성영상과 SRTM DEM을 활용한 연안습지 탐지: 서해안 곰소만을 사례로 (Detection of the Coastal Wetlands Using the Sentinel-2 Satellite Image and the SRTM DEM Acquired in Gomsoman Bay, West Coasts of South Korea)

  • 정윤재;김경섭;박인선
    • 한국지리정보학회지
    • /
    • 제24권2호
    • /
    • pp.52-63
    • /
    • 2021
  • 기존 연구에서는 연안습지를 탐지하기 위해 위성/항공 영상의 다중분광 밴드로부터 산출한 식생지수 또는 토지피복도를 활용하였으나, 단일 센서만을 활용할 경우 토지피복정보와 지형정보를 동시에 고려하는 것에 한계가 있어 높은 정확도의 연안습지 탐지 및 대규모 연안습지 관리 업무 수행에 많은 지장을 초래하였다. 본 연구에서는 우리나라 서해안 곰소만 지역을 촬영한 Sentinel-2 위성영상의 다중분광 밴드와 디지털 지형 모델인 SRTM(Shuttle Radar Topography Mission) DEM(Digital Elevation Model)을 사용하여 서해안 곰소만의 대규모 연안습지를 다음의 과정을 통해 탐지하였다. 우선 Sentinel-2 위성영상의 Green 및 근적외선 밴드를 활용하여 정규수분지수 영상을 제작하였다. 그리고 정규수분지수 영상에서 픽셀의 밝기값 0.2를 임계치로 설정하여 물과 육지를 구분하는 이진화 영상을 제작하였으며, SRTM DEM에서 픽셀의 밝기값 0을 임계치로 설정하여 해수면 아래와 해수면 위를 구분하는 이진화 영상을 제작하였다. 최종적으로는 두 장의 이진화 영상에 중첩 분석을 적용하여 이진화 영상 기반 연안습지 지도를 제작하였다. 본 연구에서 제안한 기술을 활용하여 제작한 이진화 영상 기반 연안습지 지도의 정확도는 94%로서 매우 높은 결과를 보여주었으며, 연안습지가 아닌 내륙습지, 산지습지 등은 탐지되지 않아서 연안습지 관리 업무에 매우 효과적으로 활용될 수 있음을 확인하였다.

Harmonized Landsat Sentinel-2 (HLS) 위성자료를 활용한 클로로필-a 추정 (Estimation of Chlorophyll-a via harmonized landsat sentinel-2 (HLS) datasets)

  • 박종민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.400-400
    • /
    • 2023
  • 급격한 기후변화로 인해 일사량, 지표면 온도 및 이산화탄소 농도가 꾸준히 상승함에 따라 수문 순환의 불균형을 초래함과 하천 및 호소 내 수질 또한 악화되고 있는 추세이다. 특히, 국내의 경우, 기후변화 및 인위적 요인에 의해 하천 및 호소에서의 수위 감소 및 수온 증가로 인해 부영양화가 증가되고 있고, 이로 인한 유해 녹조의 발생빈도를 높이는 결과를 초래한다. 현재 국내에서는 유인 수질 관측 및 자동 수질관측 시스템을 통해 주요 수질인자를 모니터링 하고 있으나 시·공간적인 변동성을 파악하는데 제한점이 있다. 이러한 한계점을 극복하기 위해 국·내외에서 광학위성을 이용한 수질인자 추정 알고리즘 개발과 관련된 연구들이 진행되고 있다. 이에 따라, 본 연구에서는 NASA에서 제공하는 Landsat-8 위성과 ESA에서 제공하는 Sentinel-2자료가 동화된 Harmonized Landsat Sentinel-2 위성자료를 활용한 클로로필-a (Chl-a)를 추정하고자 한다. 이를 위해, 본 연구에서는 1) 단순 회귀 분석, 2) Akaike information criteria (AIC) 기반 최적화 회귀 분석 및 3) Random forest (RF)를 활용하였다. 또한, HLS 위성 자료의 적용성을 평가하기 위해 미국 오하이오 주에 위치하고 있는 130여개의 중규모 및 대규모 호소에서 2000년부터 2021년까지 수집된 클로로필-a 관측치를 활용하였다. 두 가지 수질 추정 모형에 대한 정확도 검증에 앞서 오하이오 주 내에서의 클로로필-a의 시계열적 변동성에 대하여 분석하였다. 전반적으로, 2000년부터 2016년까지는 Chl-a가 꾸준히 증가하는 경향성을 나타내었으나, 그 이후로는 감소하는 추세를 나타내었다. 이를 기반으로, 각 방법론을 통해서 나온 Chl-a 추정치에 대해서 통계적 검증을 수행하였다. 결과, 단순 회귀 분석을 통해 추청된 Chl-a값의 결정계수는 0.34였지만, AIC 기반 모델과 RF모형을 사용한 결과 결정계수가 각각 0.82와 0.92로 향상된 것을 확인할 수 있었다. 이와 더불어, spatial 및 temporal window와 더불어 호소의 크기에 따른 정확도 분석 또한 수행하였다. 그 결과, temporal window 가 정확도에 가장 큰 영향을 미치는 것으로 나타났으며, 호소의 크기가 작을수록 정확도가 낮아지는 것을 확인 할 수 있었다. 본 연구의 결과를 토대로 추후 국내 호소에 대해 상기 모형들의 적용성 평가를 수행하여 효율적인 수질 모니터링 시스템 구축으로 이어질 수 있을 것으로 기대된다.

  • PDF

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme)

  • 김상우;이태화;천범석;정영훈;신용철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.274-274
    • /
    • 2021
  • 토양수분은 가뭄, 홍수, 산불 및 산사태 등 자연재해 발생에 직간접적으로 영향을 미치기 때문에, 시·공간적으로 연속적인 토양수분 관측이 필요하다. 과거에는 TDR (Time Domain Reflectometry) 관측 장비를 설치하여 토양수분의 변화를 관측하였으나, 이러한 지점관측의 경우 하나의 관측지점에서 토양수분을 관측하기 때문에 공간적인 토양수분 변화를 나타내지 못한다. 최근 이러한 문제를 해결하기 위하여 인공위성 이미지 자료를 이용한 토양수분 산정에 관한 연구가 활발히 수행되고 있다. 그러나 SMOS (Soil Moisture and Ocean Salinity), SMAP (Soil Moisture Active Passive)와 같은 다양한 위성에서 관측된 토양수분은 낮은 공간해상도로 인한 불확실성이 커지는 단점이 있다. 최근 이러한 한계를 극복하기 위하여 광학위성영상과 달리 날씨의 영향을 받지 않으며 고해상도 이미지자료를 제공하는 Sentinel-1A/B 위성을 활용하여 토양수분을 관측하는 연구가 진행되고 있다. Sentinel-1은 10m의 높은 공간해상도를 제공하지만, 1~2주 주기로 영상취득이 가능하기 때문에 재방문시기와 같은 시간해상도 문제가 발생한다. 따라서 본 연구에서는 Sentinel-1A/B SAR 기반 후방산란계수와 농촌진흥청에서 제공하는 TDR 기반 토양수분 실측값을 이용하여 우리나라 토양수분 공간분포를 산정하였다. 산정된 Sentinel-1A/B 기반 토양수분과 토양수분자료동화기법을 연계하여 토양의 수리학적 매개변수를 추출하였으며, 추출된 매개변수와 기상자료를 이용하여 장기간(2001~2018) 일별 토양수분 공간분포를 산정하였다.

  • PDF

Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구 (The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images)

  • 이슬기;송종성;이창욱;고보균
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.545-557
    • /
    • 2022
  • 본 연구는 직접적인 접근이 어려운 demilitarized zone (DMZ)의 산불 피해 지역을 파악하기 위하여, 고해상도 위성영상 및 머신러닝 기반의 감독 분류 기법을 이용하였다. 고해상도 위성 영상은 Sentinel-2 A/B를 이용하였으며, SVM 감독분류 기법을 기반으로 토지피복도를 산출하였다. DMZ 산불 피해 지역을 분류하기 위한 최적의 조합을 찾기 위하여 SVM 내에 다양한 커널과 밴드 조합에 따른 감독 분류를 진행하고 오차 행렬을 통해 정확도를 평가하였다. 또한, 2020년, 2021년은 위성영상 자료 기반의 산불 탐지 결과와 산불 연보의 피해 지역 면적 간의 비교를 통한 검증을 수행하였다. 이후, 현재 피해 면적 자료가 없는 2022년의 산불 피해 지역을 탐지함으로써 신뢰할 만한 수준의 결과를 신속적으로 파악하고자 하였다.

다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석 (Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data)

  • 김경섭;문갑수;정윤재
    • 한국지리정보학회지
    • /
    • 제23권2호
    • /
    • pp.70-82
    • /
    • 2020
  • 최근 도시홍수에 의해 많은 피해가 발생하고 있으며, 단시간에 국지적으로 발생하는 집중호우가 1차 원인으로 꼽히고 있다. 도시홍수의 피해는 도시지역 내 물수지의 변화로 규명하고 있으며, 이를 간접적으로 파악하기 위해 일강수량 자료와 다중시기 Sentinel-2 위성영상을 활용해 집중호우 전후의 토지피복별 원격탐사지수 변화를 분석하였다. 일강수량 자료를 바탕으로 호우주의보 및 경보의 사례를 선정하였고, 해당 기간의 Sentinel-2 위성영상을 취득해 이를 기상청 서울관측소 기준 반경 1,000m 범위의 정규식생지수(NDVI), 정규수분지수(NDWI) 및 정규습윤지수(NDMI) 영상을 토지피복별로 제작하여 통계적 변화를 비교하였다. 각 영상을 구성하고 있는 픽셀의 최댓값, 최솟값, 평균 및 그 증감을 분석한 결과, 집중호우 전후 도시지역 원격탐사지수에 유의미한 변화가 발생한 것으로 보기는 힘들다고 판단하였다.

Sentinel-2 위성영상을 활용하여 국가하천망 제작을 위한 자동화 기술 개발 -서울시 한강을 사례로- (Development of the Automatic Method for Detecting the National River Networks Using the Sentinel-2 Satellite Imagery -A Case Study for Han River, Seoul-)

  • 김선우;권용하;정연인;정윤재
    • 한국지리정보학회지
    • /
    • 제25권2호
    • /
    • pp.88-99
    • /
    • 2022
  • 하천망은 하천 관리에 있어서 필수적인 지형특성 중 하나이다. 기존에 현장조사를 통해 구축되었던 하천망은 최근에 원격탐사 자료를 활용하여 효율적으로 구축되기 시작하였다. 교량 등 장애물이 많은 도시 하천망의 경우, 하천 내 장애물 제거에 어려움이 있어 온전한 하천망을 구축한 사례는 드물다. 본 연구는 Sentinel-2 위성영상을 활용하여 도시 내 하천에 존재하는 장애물을 제거하고 경계선이 보전된 온전한 하천망을 자동으로 추출하는 기술을 개발하였다. 우선 Sentinel-2 위성영상의 다중분광 밴드를 활용하여 정규수분지수 영상을 제작하고 수체와 그 외 지역을 구분할 수 있는 이진화 영상을 제작하였다. 그리고 모폴로지 연산을 이진화 영상에 적용하여 장애물이 제거되고 경계선이 보전된 온전한 하천망을 추출하였다. 본 연구에서 개발한 기술을 서울시 한강에 적용한 결과, 경계선은 보존되고 교량 등 장애물이 제거된 온전한 하천망을 추출할 수 있었다.

Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링 (Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data)

  • 김민주;현창욱
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.311-323
    • /
    • 2023
  • 기름 유출 사고는 발생 시 환경과 관련된 다양한 문제들을 야기하므로 신속하게 유출유의 면적과 위치 변화를 파악하는 것이 중요하다. 광학 위성자료를 활용한 기름 유출 탐지의 경우 다양한 위성탑재 센서를 통해 유출유에 대한 정보 수집 후 이를 이용하여 광범위한 기름 유출 범위를 모니터링할 수 있다. 선행 연구에서는 파장별 기름의 반사도를 분석한 후 특정 파장대의 밴드를 이용한 oil spill index가 개발 및 적용되었다. 기름 유출 모니터링을 위해 유출 전후 여러 시기의 위성자료를 분석할 경우 다량의 데이터로 인해 많은 시간과 컴퓨팅 자원이 소비된다. 웹 브라우저를 통해 대량의 위성자료 분석이 가능한 Google Earth Engine을 활용할 경우 효율적으로 기름 유출 탐지가 가능하다. 본 연구에서는 Sentinel-2 MultiSpectral Instrument 위성자료와 클라우드 기반의 위성자료 분석 플랫폼인 Google Earth Engine을 이용하여 기존에 제안된 네 종류의 oil spill index의 다양한 피복 환경에서의 활용성 평가를 수행하였다. 지표 피복별 index 값의 비교를 통해 기름 유출 영역이 타 피복과 잘 구분되는지에 대한 분리도를 평가하고 기름 유출 면적을 산정하였다. 본 연구 결과를 통해 Google Earth Engine이 기름 유출 광역 모니터링에 효율적으로 활용 가능하다는 것을 확인하였고, 복잡한 지표 피복이 분포하는 다른 지역에 기름 유출 사고 발생 시 우수한 성능으로 평가된 oil spill index B ((B3+B4)/B2)와 C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5)의 적용은 효과적인 기름 유출 모니터링에 기여할 것으로 판단된다.

광학위성영상을 이용한 기계학습/PROSAIL 모델 기반 엽면적지수 추정 (Estimation of Leaf Area Index Based on Machine Learning/PROSAIL Using Optical Satellite Imagery)

  • 이재세;강유진;손보경;임정호;장근창
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1719-1729
    • /
    • 2021
  • 엽면적지수는 효율적인 산림관리를 수행하기 위해 필요한 정보를 제공한다. 현재 국내 지역에 가용한 고해상도 엽면적지수 자료는 유럽우주국의 Sentinel-2 위성 기반 자료가 있으나 알고리즘 개발에 국내 산림특성이 고려되지 않았고, 국내 지역에 대해 평가가 부족한 상태이다. 본 연구에서는 LAI-2200C 장비를 이용하여 엽면적지수 현장관측을 실시한 뒤, 최근 다양한 연구에서 사용되는 기계학습 알고리즘 및 PROSAIL 복사전달 모델을 기반으로 Sentinel-2 위성의 다중분광 센서 자료를 이용해 엽면적지수를 추정하여 기존 Sentinel-2 기반 엽면적지수 자료와 비교·분석을 진행하였다. 그 결과, 본 연구에서 개발한 모델은 기존 Sentinel-2 엽면적지수 자료와 비교하였을 때, 평균 bias 및 평균 RMSE의 차이가 각각 0.97 및 0.81로 과소추정 경향을 개선하며 낮은 오류를 나타내었다. 본 연구에서 개발된 엽면적지수 추정 알고리즘은 추후 국토 산림에 대한 보다 개선된 자료를 제공할 가능성을 제시하였다.

Sentinel 위성기반 한반도 연속 지반변화 관측체계 개발 (Development of Continuous Ground Deformation Monitoring System using Sentinel Satellite in the Korea)

  • 유정흠;윤혜원
    • 대한원격탐사학회지
    • /
    • 제35권5_2호
    • /
    • pp.773-779
    • /
    • 2019
  • 본 연구에서는 유럽에서 운영 중인 Sentinel-1 위성레이더 자료를 기반으로 하여 한반도 전역의 지반변화를 자동으로 분석하는 체계 구축을 수행하였다. 장시간에 걸려 발생하는 지반변화 자연재난은 광역적 지역에서 발생하게 되어 관측의 어려움과 분석을 위한 대용량의 자료가 요구되었다. 하지만, 인공위성의 발달로 광역지역을 주기적으로 관측할 수 있는 방법이 개발되었으며, 이렇게 축적된 다년간의 위성 관측 자료를 활용하여 시계열적인 지반의 변화를 분석할 수 있게 되었다. 이에 연구원에서는 한반도 전 지역을 대상으로 위성레이더 관측자료 취득에서 부터 지반변위 분석 및 분석 결과 표출까지 모든 과정을 자동화 하는 체계를 구축하였다. 본 연구에서 개발된 체계를 기반으로 한반도 전 지역에 대한 주기적인 지반변화 자료의 갱신이 가능하게 되었으며, 변화 우려지역에 대한 사전적 정보제공을 통하여 대형 재난에 대한 예방단계의 대응이 가능하게 될 것으로 기대된다. 향후 지역별 자동화 분석 체계와 동일대상 지역의 다 채널 분석 및 3차원 변화 분석체계에 대한 연구가 진행된다면, 보다 다양한 지반변위 정보를 제공할 수 있을 것이다.

모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시 (Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters)

  • 강유진;조동진;한대현;임정호;임중빈;오금희;권언혜
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1029-1042
    • /
    • 2021
  • 차세대 중형위성 사업의 일환으로 농지 및 산림에서의 원격 탐사를 위하여 농림위성 (차세대 중형위성 4호)이 발사 예정에 있다. 위성 영상에서 식생의 정량적인 정보를 얻기 위해서는 대기보정을 통한 지표 반사도 취득이 선행되어야 하므로 농림위성을 위한 대기보정 기술 개발은 불가피할 것으로 생각된다. 특히 대기에서의 흡수와 산란 특성은 파장에 따라 다르게 나타나므로 농림위성 파장 영역을 고려한 대기보정 파라미터 민감도 분석이 필요하다. 또한, 농림위성은 5개 채널(Blue, Green, Red, Red edge, Near-infrared)을 보유하고있어 대기보정 주요 파라미터인 AOD (Aerosol optical depth)와 WV (Water vapor)를 직접 산출하기 어려우므로 이를 외부에서 제공할 수 있는 방안을 마련할 필요가 있다. 따라서, 본 연구에서는 농림위성과 유사한 사양을 가진 Sentinel-2 위성 영상을 이용하여 주요 파라미터인 AOD, WV, O3 민감도 분석을 수행하고, 파라미터 제공을 위해 천리안 2A (GK2A; GEO-KOMPSAT-2A) 정지궤도 복합위성의 산출물을 이용하여 대기보정 파라미터로서의 활용 가능성을 살펴보았다. 민감도 분석 결과는 AOD가 가장 중요한 파라미터임을 보여주었으며, 근적외선 채널보다는 가시광 채널에서 더 큰 민감도를 가지는 것으로 나타났다. 특히 Blue 채널에서 AOD의 20%의 변화는 지표 반사도에서 약 100%의 오차율을 야기하므로 정확한 지표 반사도 취득을 위해서는 높은 신뢰성을 가진 AOD가 필요할 것으로 생각된다. GK2A AOD 산출물을 이용한 대기보정 결과는 토지피복별 분류 가능성을 이용하여 Sentienl-2 L2A 자료와 비교한 결과, 두 모델별 분류 가능성은 유사하였으나, 파장대가 짧은 영역일수록 GK2A AOD 산출물을 적용한 대기보정 결과가 Sentinel-2 L2A보다 높게 나타났다. 이를 통해 GK2A에서 제공되는 산출물이 향후 농림위성 대기보정 파라미터로서 충분히 활용될 수 있을 것으로 판단된다. 본 연구의 결과는 추후 농림위성 발사 후 대기보정에 참고 자료로서 활용될 수 있을 것으로 기대된다.