• 제목/요약/키워드: Sentinel-2 위성

검색결과 132건 처리시간 0.029초

Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정 (Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images)

  • 손무빈;정지훈;이용관;우소영;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF

고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구 (Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images)

  • 김예슬;이광재;이선구
    • 대한원격탐사학회지
    • /
    • 제37권6_3호
    • /
    • pp.1931-1942
    • /
    • 2021
  • 최근 고해상도 광학 위성영상의 활용성이 강조되면서 이를 이용한 지표 모니터링 연구가 활발히 수행되고 있다. 그러나 고해상도 위성영상은 낮은 시간 해상도에서 획득되기 때문에 그 활용성에 한계가 있다. 이러한 한계를 보완하기 위해 서로 다른 시간 및 공간 해상도를 갖는 다중 위성영상을 융합해 높은 시공간 해상도의 합성 영상을 생성하는 시공간 자료 융합을 적용할 수 있다. 기존 연구에서는 중저해상도의 위성영상을 대상으로 시공간 융합 모델이 개발되어 왔기 때문에 고해상도 위성영상에 대한 기개발된 융합 모델의 적용성을 평가할 필요가 있다. 이를 위해 이 연구에서는 KOMPSAT-3A 영상과 Sentinel-2 영상을 대상으로 기개발된 시공간 융합 모델의 적용성을 평가하였다. 여기에는 예측을 위해 사용하는 정보가 다른 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM)과 Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM)을 적용하였다. 연구 결과, 시간적으로 연속적인 반사율 값을 결합하는 STGDFM의 예측 성능이 ESTARFM 보다 높은 것으로 나타났다. 특히 KOMPSAT 영상의 낮은 시간 해상도로 같은 시기에서 KOMPSAT 및 Sentinel-2 영상을 동시에 획득하기 어려운 경우, STGDFM의 예측 성능 향상이 더욱 크게 나타났다. 본 실험 결과를 통해 연속적인 시간 정보를 결합해 상대적으로 높은 예측 성능을 가지는 STGDFM을 이용해 낮은 재방문 주기로 인한 고해상도 위성영상의 한계를 보완할 수 있음을 확인하였다.

Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험 (An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine)

  • 이지현 ;김광섭 ;이기원
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.599-608
    • /
    • 2023
  • 수문학, 기상학 및 농업과 같은 응용 분야에서 위성 기반 토양 수분 정보에 대한 관심이 높아지면서 다양한 해상도에서 토양수분도를 제작하는 방법의 개발과 사례 연구는 위성 정보 활용의 주요 주제 중 하나로 대두되고 있다. 이 연구는 Google Earth Engine (GEE)에서 제공하는 Sentinel-과 Sentinel-2 공개 자료를 적용하여 토양수분도 제작 결과를 예시하였다. 토양수분도는 synthetic aperture radar (SAR) 영상과 광학 영상과 융합하여 산출하였다. SAR 영상은 GEE에서 제공하는 Sentinel-1 위성의 후반 산란 계수 analysis ready data (ARD)자료와 Sentinel-2에서 계산한 정규식생지수와 함께 Environmental Systems Research Institute (ESRI)의 토지 피복자료를 사용하였다. 호주 빅토리아 주에 위치한 연구지역을 대상으로 토양수분도를 제작하였으며, 기존 연구에서 발표된 현장 측정값과 비교 분석하였다. 현장 측정값을 기준으로 실험 결과의 정확도를 비교한 결과로 결괏값은 기준 값과 4-10%p 차이를 보이는 유의미한 범위의 일치도를 보이고, 위성 기반 토양수분도와는 0.5-2%p의 높은 일치도를 보이는 것으로 나타났다. 따라서 지역의 지표 특성에 따라 고해상도의 토양수분도가 필요한 지역은 GEE를 통하여 제공되는 공개 자료와 이 연구에서 적용한 알고리즘으로 토양수분도의 제작이 가능할 것으로 생각한다.

Sentinel-2 위성영상을 활용한 농업용 저수지 수표면 및 가용수량 추정 (Estimation of Water Surface and Available Water for Agricultural Reservoirs using Sentinel-2 Satellite Imagery)

  • 이희진;남원호;윤동현;장민원;김대의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.163-163
    • /
    • 2020
  • 전 세계적으로 기후변화에 따른 온난화 현상으로 인하여 농업에 직접적인 영향을 주는 기상 및 환경요인의 변화가 급격하게 진행되고 있다. 2017년에는 전국의 봄철 강수량이 평년 대비 60% 수준으로 물 부족 현상을 야기하여 극심한 가뭄이 발생하였다. 최근 지역적인 강수량 부족으로 인한 국소적인 가뭄 발생 및 발생빈도가 높아지고 있는 추세이며, 특히 농업가뭄은 농업용수의 주요한 용수공급시설인 농업용 저수지 및 용수공급시설의 지역적 편중 등으로 농업용수 부족 상황이 발생할 위험이 커지고 있다. 따라서, 시기별 저수지의 가용용수능력을 평가하는 것이 중요하며, 이러한 판단을 위하여 위성영상을 이용한 저수지 수표면적 및 용수능력판단이 필요하다. 본 연구에서는 가뭄시기의 저수지 수표면적 및 용수능력판단을 위하여 Sentinel-2 위성영상을 활용하여 2016년부터 2018년까지 충청남도 서산 지역의 농업용 저수지를 대상으로 정규수분지수(Normalized Difference Water Index, NDWI)을 산정하였다. NDWI는 위성영상의 파장 정보를 활용하여 지표면의 수분함유량과 관계를 나타내며, 하천, 호수, 습지 등 수분을 다량으로 함유한 지형지물을 탐지하기 위하여 사용된다. NDWI와 수위-내용적 자료와의 관계로부터 저수지 수표면적을 산출하였으며, 이에 따른 상관성 분석을 통하여 위성영상을 활용한 농업용 저수지의 가용수량 추정방법을 제시하고자 한다.

  • PDF

드론 영상을 이용한 Sentinel-2, Landsat-8 위성 NDVI 평가: 벼 병해 발생 지역을 대상으로 (Evaluation of NDVI Retrieved from Sentinel-2 and Landsat-8 Satellites Using Drone Imagery Under Rice Disease)

  • 류재현;안호용;나상일;이병모;이경도
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1231-1244
    • /
    • 2022
  • 이상기상으로 인해 노지 작물이 스트레스 상황에 노출되는 빈도가 증가하고 있다. 우리나라에서도 대표적인 벼 재배지역에서 대규모의 병해가 발생하는 사례가 나타났으며, 특정 시기에 대규모 필지에서 발생하는 피해를 현장방문으로 조사하는 것은 한계가 있다. 위성 기반의 원격탐사 기법은 시군 영역을 대상으로 작물을 모니터링하기에 유용하나 작물의 생육이상에 따른 민감도 평가가 선행되어야 한다. 본 연구에서는 벼 병해 발생 지역에서 서로 다른 공간해상도를 가지는 위성 기반의 정규화식생지수(normalized difference vegetation index, NDVI)를 드론 영상을 이용하여 평가하였다. 10 m와 30 m의 공간해상도를 가지는 Sentinel-2, Landsat-8 위성 영상을 평가하였으며, 드론 영상은 약 8-10 cm의 공간해상도를 가졌다. 위성 영상에 맞춰 리샘플링(resampling)된 드론 NDVI는 Sentinel-2 NDVI 와 0.867-0.940의 상관관계를 가졌으며, Landsat-8 NDVI와는 0.813-0.934의 상관관계를 가졌다. 센서의 차이, 관측 시점의 차이 등으로 인한 편향(bias) 영향을 최소화하였을 때, Sentinel-2 NDVI는 Landsat-8 NDVI에 비해 드론 NDVI와 0.2-2.8% 더 적은 정규화된 평균 제곱근 오차를 가졌다. 또한, Sentinel-2 NDVI는 드론 NDVI와 병해 피해 정도와 관계없이 일정한 오차를 가졌으나 Landsat-8 NDVI는 병해 피해 정도에 따라 드론 NDVI와 오차 특성이 다르게 나타났다. 농경지 경계에서 오차가 크다는 것을 고려했을 때 공간해상도가 높은 영상을 활용하는 것이 작물 모니터링에 효과적이라고 판단된다.

다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발 (Water resources monitoring technique using multi-source satellite image data fusion)

  • 이슬찬;김완엽;조성근;전현호;최민하
    • 한국수자원학회논문집
    • /
    • 제56권8호
    • /
    • pp.497-508
    • /
    • 2023
  • 수자원의 계절적 편중이 심한 한반도에서 농업용 저수지는 이를 효과적으로 유지 및 관리하기 위한 필수적인 구조물이다. 저수지 모니터링을 위한 수단으로 광학 및 합성개구레이더(Synthetic Aperture Radar, SAR) 위성영상이 활용되고 있으나, 광학영상은 기상현상에 의한 간섭이 심하다는 한계점이 존재하며, SAR 영상은 짙은 식생에서 일어나는 다중 산란 및 노이즈에 의한 오탐지 및 미탐지가 발생하기 쉽다. 이에 본 연구에서는 광학 영상과 SAR 영상의 융합을 통해 저수지 수체 탐지 정확도를 높이고 상호보완적 작용에 대해 정량적으로 분석하고자 하였다. 경기도 이동저수지, 충청남도 천태 저수지를 대상으로, 국내 고해상도 위성인 차세대중형위성 1호, 다목적실용위성 3호 및 3A호, 그리고 유럽우주국의 Sentinel-2 영상 기반 Normalized Difference Water Index (NDWI)와 SAR 탑재 위성인 Sentinel-1 단일 영상에 비지도학습 기법인 K-means 클러스터링 기법을 사용하여 수체를 탐지하고, NDWI-SAR 후방산란계수로 이루어진 2-D grid space에 동일 기법을 활용하여 정확도의 향상 정도를 파악하였다. 전반적인 정확도는 다목적실용위성이 가장 높은 것으로 나타났으며(두 저수지 모두 0.98), 이후 Sentinel-1(두 저수지 모두 0.93), Sentinel-2(이동: 0.83, 천태: 0.97), 차세대중형위성(이동: 0.69, 천태: 0.78) 순서로 감소하였다. 천태저수지에서 2-D K-means 클러스터링 기법을 적용한 결과 차세대중형위성의 수체탐지 정확도는 약 85%의 정밀도 향상과 14%의 재현율 감소와 함께 약 22% 향상되었으며(정확도 약 0.95), 다목적실용위성 및 Sentinel-2의 수체탐지 정밀도는 3-5% 향상되었고, 재현율은 4-7% 감소하였다. 추후 차세대중형위성 5호인 수자원위성 등 고해상도 SAR 위성과 이를 활용할 수 있는 고도화된 영상 융합기술, 수체 탐지 기술이 개발된다면 국내 수자원에 대한 매우 정확한 모니터링이 가능할 것으로 기대된다.

Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로 (Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land)

  • 조강준;김용일
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 위성은 기존 Landsat 시리즈보다 높은 공간해상도, 시간해상도 및 13개의 가시광, Red-edge, 적외, 단파적외 영역을 포함하는 다중분광 영상을 제공하고 있다. 이는 Landsat 시리즈와의 비슷한 파장대역 구성으로 향후 Landsat 시리즈와 융합분석이 가능하다는 이점이 있다. 그 동안 Landsat 위성영상은 국내의 다양한 연구에 적용되고 있으나 Sentinel-2 광학 위성영상은 많은 활용 사례가 보고되지 않았다. Sentinel-2 광학 위성은 기존 Landsat 위성이 제공하는 Top-of-Atmosphere(TOA) 반사율 영상을 Level-1C(L1C)에서 제공하고 있으며, Level-2A(L2A)영상을 통해 Landsat 시리즈보다 한 단계 더 대기보정이 수행된 Bottom-of-Atmosphere(BOA) 반사율 영상을 제공할 예정에 있다. BOA 반사율 영상은 에어로졸 광학 두께(AOT: Aerosol optical thickness)와 대기 중 수증기(WV: Water Vapor) 자료를 Sentinel-2 영상으로부터 얻고 이를 보정하여 TOA 반사율 영상을 BOA 반사율 영상으로 변환을 가능하게 한다. 현재, 유럽 전역지역에서 L2A 자료를 무료로 다운로드 가능하며 이외 지역의 경우 L2A 자료의 실시간 제공이 예정되어 있다. 따라서, Sentinel-2 L2A 자료의 활용가능성이 국내에서 점점 커질 것으로 기대되는 바이며 농업지역에서 Sentinel-2 L2A 영상이 제공하는 BOA 반사율 자료의 활용가능성을 확인하기 위해 경상남도 합천군에서 촬영된 항공 초분광영상을 활용하여 Sentinel-2 L2A 자료를 모의해 보고 정량적인 분석을 통해 모의영상과 실제 촬영된 영상을 비교해보았다. 본 연구에서는 Sentinel-2 L2A 자료와 항공기 기반의 초분광 영상을 통해 모의된 Sentinel-2 영상에 대한 정량적인 비교를 수행하였으며, 가시광 영역대의 밴드와 식생지수에 대하여 참조 영상인 모의영상과 대기보정이 수행된 L2A 자료의 RMSE의 감소 및 상관관계의 증가 경향이 뚜렷하게 나타나는 것으로 확인되었다.

Sentinel-1 SAR 위성영상과 Water Cloud Model을 활용한 시공간 토양수분 산정 (Spatio-temporal soil moisture estimation using water cloud model and Sentinel-1 synthetic aperture radar images)

  • 정지훈;이용관;김세훈;장원진;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.28-28
    • /
    • 2022
  • 본 연구는 용담댐유역을 포함한 금강 유역 상류 지역을 대상으로 Sentinel-1 SAR (Synthetic Aperture Radar) 위성영상을 기반으로 한 토양수분 산정을 목적으로 하였다. Sentinel-1 영상은 2019년에 대해 12일 간격으로 수집하였고, 영상의 전처리는 SNAP (SentiNel Application Platform)을 활용하여 기하 보정, 방사 보정 및 Speckle 보정을 수행하여 VH (Vertical transmit-Horizontal receive) 및 VV (Vertical transmit-Vertical receive) 편파 후방산란계수로 변환하였다. 토양수분 산정에는 Water Cloud Model (WCM)이 활용되었으며, 모형의 식생 서술자(Vegetation descriptor)는 RVI (Radar Vegetation Index)와 NDVI (Normalized Difference Vegetation Index)를 활용하였다. RVI는 Sentinel-1 영상의 VH 및 VV 편파자료를 이용해 산정하였으며, NDVI는 동기간에 대해 10일 간격으로 수집된 Sentinel-2 MSI (MultiSpectral Instrument) 위성영상을 활용하여 산정하였다. WCM의 검정 및 보정은 한국수자원공사에서 제공하는 10 cm 깊이의 TDR (Time Domain Reflectometry) 센서에서 실측된 6개 지점의 토양수분 자료를 수집하여 수행하였으며, 매개변수의 최적화는 비선형 최소제곱(Non-linear least square) 및 PSO (Particle Swarm Optimization) 알고리즘을 활용하였다. WCM을 통해 산정된 토양수분은 피어슨 상관계수(Pearson's correlation coefficient)와 평균제곱근오차(Root mean square error)를 활용하여 검증을 수행할 예정이다.

  • PDF

산불 후 식생 회복 모니터링을 위한 Sentinel-2 위성영상의 RGB 합성기술 (RGB Composite Technique for Post Wildfire Vegetation Monitoring Using Sentinel-2 Satellite Data)

  • 김상일;안도섭;김승철
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.939-946
    • /
    • 2021
  • 산불로 인한 피해지역의 산림 변화를 모니터링하는 것은 식생복원에 중요한 정보를 제공하며, 자연 재해를 완화하고 복구하기 위해 공간정보를 가지는 원격탐사 자료는 모니터링에 필요한 유용한 정보를 제공하는 것으로 알려져 있다. 하지만 원격탐사자료를 활용한 복구 측면에 초점 두어 연구된 사례가 미비한 상황이다. 본 연구는 화재 후 식생회복을 모니터링하기 위한 것으로, Sentinel-2 위성 데이터를 사용하여 산불 피해 지역을 모니터링하는 방법을 제시하는 것을 목적으로 한다. 산불피해지역의 식생회복 모니터링을 위해 Tasseled Cap 선형회귀 추세를 기반으로 RGB 합성기술을 제안하였다. 이러한 위성영상을 활용한 원격탐사 시각화 기법을 통해 효과적인 모니터링 가능성을 확인할 수 있었다.

위성영상을 이용한 저수지 수체면적 변화 분석 (Analysis of Water Surface Area Change in Reservoir Using Satellite Images)

  • 김주훈;김동필
    • 대한토목학회논문집
    • /
    • 제44권5호
    • /
    • pp.629-636
    • /
    • 2024
  • 본 연구는 위성영상을 이용하여 국내의 검증 가능한 지역의 저수지 수표면 변화를 모니터링하고 저수지 수표면적과 저수량 분석을 수행하는 것을 목적으로 하였다. 본 연구의 대상지역은 충청권 일부 지역으로 용수를 공급하고 있는 금강의 대청댐을 대상으로 하였다. 위성영상의 여러 관측센서 중 Sentinel-1(SAR-C) 영상과 Sentinel-2(MSI)의 광학영상을 이용하여 수체를 탐지하는 연구를 진행하였다. 지상관측 자료인 저수지의 저수량과 추출한 수체면적과의 상관관계를 분석하였다. 분석 결과 Sentinel-1(SAR) 영상을 이용한 수체면적과 일단위 저수량과의 결정계수(R2)는 0.9242로 분석되었고, Sentinel-2의 MSI 광학영상을 이용한 분석에서도 0.8995로 상관관계가 높은 것으로 분석되었다. 또한 저수량과 수체면적과의 관계식을 이용하여 영상으로부터 추출한 수체면적의 저수량이 실제 저수량과 유사한 형태의 수문곡선을 나타내는 것으로 분석되었다. 본 연구를 통해 얻어진 결과는 향후 북한 지역과 같이 관측의 밀도가 낮고 접근이 불가한 지역에 위성영상 자료를 활용하여 주요 댐 저수지 수체면적에 대한 연간변화와 장기간의 추세를 분석하는 연구로 진행할 계획이다.