수자원위성은 C-band 영상레이더(synthetic aperture radar, SAR)를 탑재한 중형급의 수자원 관리 및 수재해 감시 전용 위성이다. 수자원위성은 물 환경과 관련된 다양한 분야에 활용되어 고부가가치의 정보를 제공할 것으로 예상되는데, 특히 시계열 레이더 간섭기법(SAR interferometry, InSAR)의 적용을 통해 댐·보와 같은 수자원시설물의 미세변위 탐지 및 안정성 평가에 효과적으로 사용될 것으로 기대된다. 시계열 영상레이더 간섭기법은 고정산란체를 이용하는 Persistent Scatterer InSAR(PSInSAR) 기법과 분산산란체 기반의 Small BAseline Subset(SBAS) InSAR 기법으로 대표된다. 이 연구에서는 수자원위성에 적합한 수리시설물 시계열 변위 모니터링 알고리즘 개발을 목적으로, Sentinel-1 위성의 C-band SAR 기반 시계열 레이더 간섭기법의 적용성을 평가하고 알고리즘 개발에 고려해야 할 사항들을 분석하였다. 2020년 여름 수재해가 발생한 섬진강댐과 담양댐 및 수변부를 테스트 사이트로 선정하고, 2019년부터 2021년까지의 Sentinel-1 시계열 SAR 영상에 PSInSAR와 SBAS InSAR를 적용하여 시계열 변위를 관측하였다. 댐체에서는 PSInSAR가 SBAS InSAR에 비해 신뢰할 수 있는 시계열 변위를 산출하였다. 그러나 시계열 분석 기간이 길어짐에 따라 PSInSAR 시계열 변위의 정밀도가 낮아지는 경향이 관측되었다. 수변부에서 PSInSAR는 변위 정보를 거의 제공하지 못했다. SBAS InSAR는 수변부의 시계열 변위 모니터링에 효과적이었으나, 여름철 장마 등으로 인해 레이더 간섭도의 긴밀도(coherence)가 낮아질 경우 부정확한 변위를 산출하였다. 앞으로 국내의 다양한 수자원시설물을 대상으로 Sentinel-1 위성을 이용한 시계열 변위 모니터링 알고리즘의 적용성 평가 연구가 진행될 예정이며, 연구 결과를 수자원위성의 관측 특성에 적합한 변위 탐지 알고리즘의 개발에 활용하고자 한다.
효율적인 물 관리를 위해서는 하천 유량 파악이 필수적이지만, 경제적 이유 등으로 인하여 현장에서 정확한 유량 자료를 꾸준히 확보하는 데에는 한계가 있다. 본 연구에서는 이러한 문제점을 극복하고자 SAR 영상을 이용하여 하천의 수위와 유량을 추정하였다. SAR 영상 자료는 악천후 및 주야의 영향을 받지 않는 ESA(European Space Agency)의 Sentinel-1 영상을 이용하였다. 위성자료에서 하천의 면적을 추출한 후 수위 및 유량과의 상관관계를 분석하였다. 촬영 시간 등에 의한 위성 영상의 조도 차이에 따른 하천 면적의 오차를 제거하기 위하여 영상을 보정하였고 주변 지역에 의한 오차를 줄이기 위하여 하천유역을 분리하여 면적을 추출하였다. 이를 통해 하천 면적과 수위 및 유량의 상관관계를 파악하였다. 국내 10여 개의 하천에 대하여 기법을 적용한 결과, 수위와 유량을 비교적 정확히 추정할 수 있었다. 본 연구의 결과는 미계측 유역의 수자원 관리 능력을 향상시킬 것으로 기대된다.
본 연구에서는 Landsat 8/9 OLI와 Sentinel-2 MSI 위성 영상을 활용한 다시기 영상 데이터를 이용하여 다양한 분광 지수를 기반으로 국내 산불 피해 면적 탐지 정확도를 분석하였다. 2022년 3월 경상북도 울진에서 발생하였던 산불을 대상으로 Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), Burned Area Index (BAI) 등의 지수를 활용하여 산불피해 면적 탐지에 활용하였다. 비교적 높은 공간 해상도를 가진 Sentinel-2 영상을 기반으로 참조 자료를 제작하였다. 총 6개의 지수 산출물을 기반으로 Sentinel-2, Landsat 8/9으로 총 4개 위성에 대해 산불 피해 정확도를 각각 분석하였다. Landsat 8/9과 Sentinel-2는 각각 16일, 10일 주기로 영상을 제공하고 있지만 구름으로 인해 영상 취득에 어려움이 많은 편이며, 우리나라는 4월부터 식생의 생장이 시작되어 봄철 산불 피해 분석 시 산불발생 전후 영상을 활용하는 경우 식생의 생장으로 인한 변화가 커서 정확도 높은 탐지에 어려움이 있다. 따라서, 본 연구는 2월에서 5월까지의 다시기 Landsat 8/9과 Sentinel-2 영상 중 같은 날짜를 기반의 영상을 서로 사용하여 시간해상도의 한계를 극복하고 탐지 정확도가 상대적으로 높은 지수를 비교 분석했다. 본 연구 결과는 한국형 산불피해 탐지 지수/모델 개발을 위한 입력 자료 등으로 활용되어 최적화된 산불 지수를 기반으로 정확도 높은 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.
쌀 수급 조절 정책의 합리적 수립을 지원하기 위해서는 벼 재배면적의 조기 추정이 필요하다. 본 연구는 국내 벼 주산지인 김제시를 대상으로 Sentinel-1 위성영상을 활용하여 이앙이 마무리되는 7월 초순 벼 재배면적을 조기에 추정하기 위해 최적의 훈련자료 수집을 위한 무인기(UAV) 영상 활용 방안을 제시하고자 수행하였다. 5월부터 7월 초까지 수집한 Sentinel-1 위성영상은 ESA에서 제공하는 SNAP(SeNtinel application platform, Version 8.0)프로그램으로 전처리하고 팜맵을 활용하여 농경지만을 추출하였다. 벼 재배지 중심 지역과 벼·콩 혼재지 무인기 영상 촬영 영역을 혼합하여 훈련자료로 선정하여 김제시 전체 벼 재배지를 추정한 결과, 정확도와 카파 계수는 각각 89.9%, 0.774로 가장 좋은 결과를 보였는데, 이는 김제시 전역을 대상으로 무작위 표본조사를 수행하여 분류한 결과와 비교 시 전체 정확도 1% 내외, 카파 계수 0.02~0.04 범위에서 차이를 보여 벼 재배지 조기 추정을 위한 무인기 영상 활용 가능성을 확인할 수 있었다.
최근 재난에 대한 광역적 탐지 및 피해상황을 예측하는데 위성레이더 영상의 활용방안이 대두되고 있다. 본 논문에서는 SENTINEL-1 위성레이더 영상을 활용하여 지진발생으로 인한 지표변위를 관측하고자 하였다. 차분간섭기법(DinSAR)을 적용하여 최근 발생한 이탈리아 중부 지진과 한반도 경주 지진의 지표변위를 관측하고 피해범위를 예측하였다. 연구결과 규모 6.4 이탈리아 지진에서 최대 20.1cm의 침하를 관측하였으며, 규모 5.8 경주 지진의 경우 발생지역 20km 범위에서 약 3cm의 지표변위를 관측하였다. 향후 지상 SAR 자료를 구축할 예정이며 재난지역의 다각적 관측자료 취득 및 보다 정확한 재난 피해를 파악 할 수 있을 것으로 기대한다.
광학 위성 영상의 공간해상도가 낮게 되면 크기가 작은 객체들의 경우 객체 탐지의 어려움이 따른다. 따라서 본 연구에서는 위성 영상의 공간해상도를 향상시키는 초해상화(Super-resolution) 기술이 객체 탐지 정확도 향상에 대한 영향이 유의미한지 알아보고자 하였다. 쌍을 이루지 않는(unpaired) 초해상화 알고리즘을 이용하여 Sentinel-2 영상의 공간해상도를 3.2 m로 향상시켰으며, 객체 탐지 모델인 Faster-RCNN, RetinaNet, FCOS, S2ANet을 활용하여 초해상화 적용 유무에 따른 선박 탐지 정확도 변화를 확인했다. 그 결과 선박 탐지 모델의 성능 평가에서 초해상화가 적용된 영상으로 학습된 선박 탐지 모델들에서 Average Precision (AP)가 최소 12.3%, 최대 33.3% 향상됨을 확인하였고, 초해상화가 적용되지 않은 모델에 비해 미탐지 및 과탐지가 줄어듦을 보였다. 이는 초해상화 기술이 객체 탐지에서 중요한 전처리 단계가 될 수 있다는 것을 의미하고, 객체 탐지와 더불어 영상 기반의 다른 딥러닝 기술의 정확도 향상에도 크게 기여할 수 있을 것으로 기대된다.
홍수 발생 시 위성영상을 활용하여 침수된 지역을 추출하는 것은 홍수 발생 기간 내의 위성영상 취득과 영상에 나타난 침수구역의 정확한 분류 등에서 많은 어려움이 존재한다. 딥러닝은 전통적인 영상분류기법들에 비해 보다 정확도가 높은 위성영상분류기법으로 주목받고 있지만, 광학영상에 비해 홍수 발생 시 위성영상의 취득이 용이한 SAR 영상의 분류 잠재력은 아직 명확히 규명되지 않았다. 본 연구는 대표적인 의미론적 영상 분할을 위한 딥러닝 모델인 SegNet과 U-Net을 활용하여 동남아시아의 라오스, 태국, 필리핀의 대표적인 홍수 발생지역인 코랏 유역(Khorat basin), 메콩강 유역(Mekong river basin), 카가얀강 유역(Cagayan river basin)에 대해 Sentinel-1 A/B 위성영상으로부터 침수지역 추출을 실시하였다. 분석결과 침수지역 탐지에서 SegNet의 Global Accuracy, Mean IoU, Mean BF Score는 각각 0.9847, 0.6016, 0.6467로 나타났으며, U-Net의 Global Accuracy, Mean IoU, Mean BF Score는 각각 0.9937, 0.7022, 0.7125로 나타났다. 국지적 분류결과 확인을 위한 육안검증에서 U-Net이 SegNet에 비해 보다 높은 분류 정확도를 보여주었지만, 모델의 훈련에 필요한 시간은 67분 17초와 187분 19초가 각각 소요되어 SegNet이 U-Net에 비해 약 3배 정도 빠른 처리속도를 보여주었다. 본 연구의 결과는 향후 딥러닝 기법을 활용한 SAR 영상기반의 홍수탐지 모델과 실무적으로 활용이 가능한 자동화된 딥러닝 기반의 수계탐지 기법의 제시를 위한 중요한 참고자료로 활용될 수 있을 것으로 판단된다.
KOMPSAT-3A 위성은 기존의 지구관측 위성에 비하여 고해상도의 MWIR 영상을 하루 2번 취득한다. 기존 SWIR 영상이나 TIR 영상과 다른 특성으로 인하여 새로운 지표면 방사 정보를 제공할 수 있다. 본 연구에서는 KOMPSAT-3A MWIR 위성영상의 특성을 살펴보기 위하여 다시기 차이 영상을 생성하여 기존 적외 영상과 비교하였다. IR 영상의 전처리 과정으로 영상 상대보정을 수행하고, PIFs(Pseudo Invariant Features) 화소기반의 상대방사 보정을 수행하여 화소값의 차이를 최소화시켰다. Sentinel-2 SWIR 영상, Landsat 8 TIR 영상과 KOMPSAT-3A MWIR 영상을 실험한 결과, KOMPSAT-3A 차이 영상에서 인공지물의 구별이 두드러짐을 확인할 수 있었다. 이러한 IR영상의 특성을 이용하여 향후 KOMPSAT-3A MWIR 영상의 활용도를 높일 수 있을 것으로 여겨진다.
벼 수량 추정에 대한 기존의 국내 연구는 주로 저해상도인 MODIS 위성영상을 사용하여 우리나라 전역을 대상으로 시군 단위에서 수행되었다. 기존 연구와 달리, 본 연구는 전북 김제시를 사례로 중해상도인 Sentinel-2 위성영상과 강우 및 토양자료를 활용하여 읍면동 단위에서 벼 수량을 추정하고 그 정확성을 평가하였다. 전북 김제시를 대상으로 2018년 8월 1일에 촬영된 Sentinel-2 영상으로부터 산출된 NDVI, LAI, EVI2, MCARI1, MCARI2의 다섯 가지 식생지수와 강우량 및 논 토양 유형 자료를 읍면동별로 집계하고 종속변수의 비정규성 문제를 해결하기 위해 다중회귀분석을 확장한 감마 일반화 선형모형으로 벼 수량을 추정하였다. 벼 수량 추정 모형에서 EVI2, 9월 강우일수, 염해답 비율이 유의한 독립변수로 선정되었다. 모형의 적합도를 나타내는 결정계수는 0.68이었고, 모형의 정확성을 나타내는 RMSE는 62.29kg/10a였다. 이 모형으로 2018년 김제시 전역의 쌀 생산량을 추정한 결과는 96,914.6M/T으로 통계연보의 94,470.3M/T과 비교해 0.46%의 오차를 보여 매우 근접한 결과가 도출되었다. 또한, 김제시의 단위면적당 쌀 생산량은 552kg/10a로 도출되어 통계자료의 550kg/10a와 거의 일치하였다. 이러한 결과는 기존 연구들과 유사한 결과로 국내에서 시군 이하 단위에서 Sentinel-2 위성영상을 활용하여 벼 수량을 추정하는 것이 가능하다는 것을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.