• 제목/요약/키워드: Sentinel 위성영상

검색결과 166건 처리시간 0.023초

시계열 영상레이더 간섭기법을 이용한 수자원시설물 변위 모니터링 (Displacement monitoring of water resource facilities using time-series SAR interferometry)

  • 김태욱;이시웅;김서현;한향선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.3-3
    • /
    • 2023
  • 수자원위성은 C-band 영상레이더(synthetic aperture radar, SAR)를 탑재한 중형급의 수자원 관리 및 수재해 감시 전용 위성이다. 수자원위성은 물 환경과 관련된 다양한 분야에 활용되어 고부가가치의 정보를 제공할 것으로 예상되는데, 특히 시계열 레이더 간섭기법(SAR interferometry, InSAR)의 적용을 통해 댐·보와 같은 수자원시설물의 미세변위 탐지 및 안정성 평가에 효과적으로 사용될 것으로 기대된다. 시계열 영상레이더 간섭기법은 고정산란체를 이용하는 Persistent Scatterer InSAR(PSInSAR) 기법과 분산산란체 기반의 Small BAseline Subset(SBAS) InSAR 기법으로 대표된다. 이 연구에서는 수자원위성에 적합한 수리시설물 시계열 변위 모니터링 알고리즘 개발을 목적으로, Sentinel-1 위성의 C-band SAR 기반 시계열 레이더 간섭기법의 적용성을 평가하고 알고리즘 개발에 고려해야 할 사항들을 분석하였다. 2020년 여름 수재해가 발생한 섬진강댐과 담양댐 및 수변부를 테스트 사이트로 선정하고, 2019년부터 2021년까지의 Sentinel-1 시계열 SAR 영상에 PSInSAR와 SBAS InSAR를 적용하여 시계열 변위를 관측하였다. 댐체에서는 PSInSAR가 SBAS InSAR에 비해 신뢰할 수 있는 시계열 변위를 산출하였다. 그러나 시계열 분석 기간이 길어짐에 따라 PSInSAR 시계열 변위의 정밀도가 낮아지는 경향이 관측되었다. 수변부에서 PSInSAR는 변위 정보를 거의 제공하지 못했다. SBAS InSAR는 수변부의 시계열 변위 모니터링에 효과적이었으나, 여름철 장마 등으로 인해 레이더 간섭도의 긴밀도(coherence)가 낮아질 경우 부정확한 변위를 산출하였다. 앞으로 국내의 다양한 수자원시설물을 대상으로 Sentinel-1 위성을 이용한 시계열 변위 모니터링 알고리즘의 적용성 평가 연구가 진행될 예정이며, 연구 결과를 수자원위성의 관측 특성에 적합한 변위 탐지 알고리즘의 개발에 활용하고자 한다.

  • PDF

SAR 영상을 이용한 하천 수위 및 유량 추정 (Estimation of Inundation Area, Stage and Discharge in River Using SAR Satellite Imagery)

  • 서민지;김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.159-159
    • /
    • 2017
  • 효율적인 물 관리를 위해서는 하천 유량 파악이 필수적이지만, 경제적 이유 등으로 인하여 현장에서 정확한 유량 자료를 꾸준히 확보하는 데에는 한계가 있다. 본 연구에서는 이러한 문제점을 극복하고자 SAR 영상을 이용하여 하천의 수위와 유량을 추정하였다. SAR 영상 자료는 악천후 및 주야의 영향을 받지 않는 ESA(European Space Agency)의 Sentinel-1 영상을 이용하였다. 위성자료에서 하천의 면적을 추출한 후 수위 및 유량과의 상관관계를 분석하였다. 촬영 시간 등에 의한 위성 영상의 조도 차이에 따른 하천 면적의 오차를 제거하기 위하여 영상을 보정하였고 주변 지역에 의한 오차를 줄이기 위하여 하천유역을 분리하여 면적을 추출하였다. 이를 통해 하천 면적과 수위 및 유량의 상관관계를 파악하였다. 국내 10여 개의 하천에 대하여 기법을 적용한 결과, 수위와 유량을 비교적 정확히 추정할 수 있었다. 본 연구의 결과는 미계측 유역의 수자원 관리 능력을 향상시킬 것으로 기대된다.

  • PDF

Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석 (Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin)

  • 김병철;이경일;박선영;임정호
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.765-779
    • /
    • 2022
  • 본 연구에서는 Landsat 8/9 OLI와 Sentinel-2 MSI 위성 영상을 활용한 다시기 영상 데이터를 이용하여 다양한 분광 지수를 기반으로 국내 산불 피해 면적 탐지 정확도를 분석하였다. 2022년 3월 경상북도 울진에서 발생하였던 산불을 대상으로 Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), Burned Area Index (BAI) 등의 지수를 활용하여 산불피해 면적 탐지에 활용하였다. 비교적 높은 공간 해상도를 가진 Sentinel-2 영상을 기반으로 참조 자료를 제작하였다. 총 6개의 지수 산출물을 기반으로 Sentinel-2, Landsat 8/9으로 총 4개 위성에 대해 산불 피해 정확도를 각각 분석하였다. Landsat 8/9과 Sentinel-2는 각각 16일, 10일 주기로 영상을 제공하고 있지만 구름으로 인해 영상 취득에 어려움이 많은 편이며, 우리나라는 4월부터 식생의 생장이 시작되어 봄철 산불 피해 분석 시 산불발생 전후 영상을 활용하는 경우 식생의 생장으로 인한 변화가 커서 정확도 높은 탐지에 어려움이 있다. 따라서, 본 연구는 2월에서 5월까지의 다시기 Landsat 8/9과 Sentinel-2 영상 중 같은 날짜를 기반의 영상을 서로 사용하여 시간해상도의 한계를 극복하고 탐지 정확도가 상대적으로 높은 지수를 비교 분석했다. 본 연구 결과는 한국형 산불피해 탐지 지수/모델 개발을 위한 입력 자료 등으로 활용되어 최적화된 산불 지수를 기반으로 정확도 높은 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.

Sentinel-1 및 UAV 영상을 활용한 김제시 벼 재배 조기 추정 (Early Estimation of Rice Cultivation in Gimje-si Using Sentinel-1 and UAV Imagery)

  • 이경도;김숙경;안호용;소규호;나상일
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.503-514
    • /
    • 2021
  • 쌀 수급 조절 정책의 합리적 수립을 지원하기 위해서는 벼 재배면적의 조기 추정이 필요하다. 본 연구는 국내 벼 주산지인 김제시를 대상으로 Sentinel-1 위성영상을 활용하여 이앙이 마무리되는 7월 초순 벼 재배면적을 조기에 추정하기 위해 최적의 훈련자료 수집을 위한 무인기(UAV) 영상 활용 방안을 제시하고자 수행하였다. 5월부터 7월 초까지 수집한 Sentinel-1 위성영상은 ESA에서 제공하는 SNAP(SeNtinel application platform, Version 8.0)프로그램으로 전처리하고 팜맵을 활용하여 농경지만을 추출하였다. 벼 재배지 중심 지역과 벼·콩 혼재지 무인기 영상 촬영 영역을 혼합하여 훈련자료로 선정하여 김제시 전체 벼 재배지를 추정한 결과, 정확도와 카파 계수는 각각 89.9%, 0.774로 가장 좋은 결과를 보였는데, 이는 김제시 전역을 대상으로 무작위 표본조사를 수행하여 분류한 결과와 비교 시 전체 정확도 1% 내외, 카파 계수 0.02~0.04 범위에서 차이를 보여 벼 재배지 조기 추정을 위한 무인기 영상 활용 가능성을 확인할 수 있었다.

위성레이더 영상을 이용한 지진에 의한 지표변위 관측 (Seismic Effect Monitoring using SAR Imagery)

  • 윤혜원;유정흠;김진영;박영진
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2016년 정기학술대회
    • /
    • pp.357-358
    • /
    • 2016
  • 최근 재난에 대한 광역적 탐지 및 피해상황을 예측하는데 위성레이더 영상의 활용방안이 대두되고 있다. 본 논문에서는 SENTINEL-1 위성레이더 영상을 활용하여 지진발생으로 인한 지표변위를 관측하고자 하였다. 차분간섭기법(DinSAR)을 적용하여 최근 발생한 이탈리아 중부 지진과 한반도 경주 지진의 지표변위를 관측하고 피해범위를 예측하였다. 연구결과 규모 6.4 이탈리아 지진에서 최대 20.1cm의 침하를 관측하였으며, 규모 5.8 경주 지진의 경우 발생지역 20km 범위에서 약 3cm의 지표변위를 관측하였다. 향후 지상 SAR 자료를 구축할 예정이며 재난지역의 다각적 관측자료 취득 및 보다 정확한 재난 피해를 파악 할 수 있을 것으로 기대한다.

  • PDF

광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석 (Impact Analysis of Deep Learning Super-resolution Technology for Improving the Accuracy of Ship Detection Based on Optical Satellite Imagery)

  • 박성욱;김영호;김민식
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.559-570
    • /
    • 2022
  • 광학 위성 영상의 공간해상도가 낮게 되면 크기가 작은 객체들의 경우 객체 탐지의 어려움이 따른다. 따라서 본 연구에서는 위성 영상의 공간해상도를 향상시키는 초해상화(Super-resolution) 기술이 객체 탐지 정확도 향상에 대한 영향이 유의미한지 알아보고자 하였다. 쌍을 이루지 않는(unpaired) 초해상화 알고리즘을 이용하여 Sentinel-2 영상의 공간해상도를 3.2 m로 향상시켰으며, 객체 탐지 모델인 Faster-RCNN, RetinaNet, FCOS, S2ANet을 활용하여 초해상화 적용 유무에 따른 선박 탐지 정확도 변화를 확인했다. 그 결과 선박 탐지 모델의 성능 평가에서 초해상화가 적용된 영상으로 학습된 선박 탐지 모델들에서 Average Precision (AP)가 최소 12.3%, 최대 33.3% 향상됨을 확인하였고, 초해상화가 적용되지 않은 모델에 비해 미탐지 및 과탐지가 줄어듦을 보였다. 이는 초해상화 기술이 객체 탐지에서 중요한 전처리 단계가 될 수 있다는 것을 의미하고, 객체 탐지와 더불어 영상 기반의 다른 딥러닝 기술의 정확도 향상에도 크게 기여할 수 있을 것으로 기대된다.

SegNet과 U-Net을 활용한 동남아시아 지역 홍수탐지 (Extracting Flooded Areas in Southeast Asia Using SegNet and U-Net)

  • 김준우;전현균;김덕진
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1095-1107
    • /
    • 2020
  • 홍수 발생 시 위성영상을 활용하여 침수된 지역을 추출하는 것은 홍수 발생 기간 내의 위성영상 취득과 영상에 나타난 침수구역의 정확한 분류 등에서 많은 어려움이 존재한다. 딥러닝은 전통적인 영상분류기법들에 비해 보다 정확도가 높은 위성영상분류기법으로 주목받고 있지만, 광학영상에 비해 홍수 발생 시 위성영상의 취득이 용이한 SAR 영상의 분류 잠재력은 아직 명확히 규명되지 않았다. 본 연구는 대표적인 의미론적 영상 분할을 위한 딥러닝 모델인 SegNet과 U-Net을 활용하여 동남아시아의 라오스, 태국, 필리핀의 대표적인 홍수 발생지역인 코랏 유역(Khorat basin), 메콩강 유역(Mekong river basin), 카가얀강 유역(Cagayan river basin)에 대해 Sentinel-1 A/B 위성영상으로부터 침수지역 추출을 실시하였다. 분석결과 침수지역 탐지에서 SegNet의 Global Accuracy, Mean IoU, Mean BF Score는 각각 0.9847, 0.6016, 0.6467로 나타났으며, U-Net의 Global Accuracy, Mean IoU, Mean BF Score는 각각 0.9937, 0.7022, 0.7125로 나타났다. 국지적 분류결과 확인을 위한 육안검증에서 U-Net이 SegNet에 비해 보다 높은 분류 정확도를 보여주었지만, 모델의 훈련에 필요한 시간은 67분 17초와 187분 19초가 각각 소요되어 SegNet이 U-Net에 비해 약 3배 정도 빠른 처리속도를 보여주었다. 본 연구의 결과는 향후 딥러닝 기법을 활용한 SAR 영상기반의 홍수탐지 모델과 실무적으로 활용이 가능한 자동화된 딥러닝 기반의 수계탐지 기법의 제시를 위한 중요한 참고자료로 활용될 수 있을 것으로 판단된다.

상대 방사 정규화를 이용한 다시기 적외 위성영상의 변화탐지 비교 (Change Detection Comparison of Multitemporal Infrared Satellite Imagery Using Relative Radiometric Normalization)

  • 한동엽;송정헌;변영기
    • 대한원격탐사학회지
    • /
    • 제33권6_3호
    • /
    • pp.1179-1185
    • /
    • 2017
  • KOMPSAT-3A 위성은 기존의 지구관측 위성에 비하여 고해상도의 MWIR 영상을 하루 2번 취득한다. 기존 SWIR 영상이나 TIR 영상과 다른 특성으로 인하여 새로운 지표면 방사 정보를 제공할 수 있다. 본 연구에서는 KOMPSAT-3A MWIR 위성영상의 특성을 살펴보기 위하여 다시기 차이 영상을 생성하여 기존 적외 영상과 비교하였다. IR 영상의 전처리 과정으로 영상 상대보정을 수행하고, PIFs(Pseudo Invariant Features) 화소기반의 상대방사 보정을 수행하여 화소값의 차이를 최소화시켰다. Sentinel-2 SWIR 영상, Landsat 8 TIR 영상과 KOMPSAT-3A MWIR 영상을 실험한 결과, KOMPSAT-3A 차이 영상에서 인공지물의 구별이 두드러짐을 확인할 수 있었다. 이러한 IR영상의 특성을 이용하여 향후 KOMPSAT-3A MWIR 영상의 활용도를 높일 수 있을 것으로 여겨진다.

Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정 (Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data)

  • 김경섭;정윤재;전병운
    • 한국지리정보학회지
    • /
    • 제25권1호
    • /
    • pp.133-149
    • /
    • 2022
  • 벼 수량 추정에 대한 기존의 국내 연구는 주로 저해상도인 MODIS 위성영상을 사용하여 우리나라 전역을 대상으로 시군 단위에서 수행되었다. 기존 연구와 달리, 본 연구는 전북 김제시를 사례로 중해상도인 Sentinel-2 위성영상과 강우 및 토양자료를 활용하여 읍면동 단위에서 벼 수량을 추정하고 그 정확성을 평가하였다. 전북 김제시를 대상으로 2018년 8월 1일에 촬영된 Sentinel-2 영상으로부터 산출된 NDVI, LAI, EVI2, MCARI1, MCARI2의 다섯 가지 식생지수와 강우량 및 논 토양 유형 자료를 읍면동별로 집계하고 종속변수의 비정규성 문제를 해결하기 위해 다중회귀분석을 확장한 감마 일반화 선형모형으로 벼 수량을 추정하였다. 벼 수량 추정 모형에서 EVI2, 9월 강우일수, 염해답 비율이 유의한 독립변수로 선정되었다. 모형의 적합도를 나타내는 결정계수는 0.68이었고, 모형의 정확성을 나타내는 RMSE는 62.29kg/10a였다. 이 모형으로 2018년 김제시 전역의 쌀 생산량을 추정한 결과는 96,914.6M/T으로 통계연보의 94,470.3M/T과 비교해 0.46%의 오차를 보여 매우 근접한 결과가 도출되었다. 또한, 김제시의 단위면적당 쌀 생산량은 552kg/10a로 도출되어 통계자료의 550kg/10a와 거의 일치하였다. 이러한 결과는 기존 연구들과 유사한 결과로 국내에서 시군 이하 단위에서 Sentinel-2 위성영상을 활용하여 벼 수량을 추정하는 것이 가능하다는 것을 입증하였다.