• 제목/요약/키워드: Sentiment Feature

검색결과 68건 처리시간 0.022초

문장 감정 강도를 반영한 개선된 자질 가중치 기법 기반의 문서 감정 분류 시스템 (A Document Sentiment Classification System Based on the Feature Weighting Method Improved by Measuring Sentence Sentiment Intensity)

  • 황재원;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권6호
    • /
    • pp.491-497
    • /
    • 2009
  • 본 논문은 한국어 문서감정 분류에서 각 문장의 감정 정도의 차이를 고려하여 자질의 가중치를 계산하는 방법을 제안한다. 감정자질은 어휘 자원으로서 감정을 가지는 단어들의 집합이며, 학습데이터를 이용하여 이 감정자질의 카이제곱 통계량 값(${\chi}^2$ statistic)을 얻을 수 있다. 이렇게 얻어진 카이제곱 통계량 값으로 문서에서 출현한 각 문장의 감정강도를 수치화 할 수 있다. 각 문장의 감정강도는 문서에서 가장 강한 감정을 가진 문장에 근한 비율로 계산되며, 이 값을 TF-IDF 가중치 기법에 적용하여 최종적인 자질의 가중치를 결정하게 된다. 그리고 일반적으로 문서 분류에서 뛰어난 성능을 보여주는 지지벡터기계(Support Vector Machine)를 사용하여 기계학습을 수행한 후 성능을 평가한다. 성능평가에서 제안된 기법은 문장감정의 강도를 고려하지 않은 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 2.0%의 성능향상을 얻었다.

The Effect of the Sentence Location on Arabic Sentiment Analysis

  • Alotaibi, Saud S.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.317-319
    • /
    • 2022
  • Rich morphology language such as Arabic needs more investigation and method to improve the sentiment analysis task. Using all document parts in the process of the sentiment analysis may add some unnecessary information to the classifier. Therefore, this paper shows the ongoing work to use sentence location as a feature with Arabic sentiment analysis. Our proposed method employs a supervised sentiment classification method by enriching the feature space model with some information from the document. The experiments and evaluations that were conducted in this work show that our proposed feature in the sentiment analysis for Arabic improves the performance of the classifier compared to the baseline model.

감성 패턴을 이용한 영화평 평점 추론 (A Rating Inference of Movie Reviews Using Sentiment Patterns)

  • 김정호;인주호;채수환
    • 감성과학
    • /
    • 제17권1호
    • /
    • pp.71-78
    • /
    • 2014
  • 본 연구는 보다 정확한 텍스트의 감성 분석을 위해 새로운 감성 특징인 감성 패턴을 제안하고, 이를 이용한 영화평 평점 추론에 대해 소개한다. 텍스트 감성 분석은 텍스트에 포함된 감성인 긍정과 부정을 인식하고 분류하는 작업으로, 이를 위해 감성 특징인 감성 단어와 구문 패턴을 이용한다. 텍스트 내에 존재하는 감성 단어와 구문 패턴의 감성을 통해 텍스트 전체의 감성을 분류하는 것이다. 하지만, 기존 감성 분석은 감성 단어와 구문 패턴의 감성을 독립적으로 고려하기 때문에 문장 혹은 글 전체의 감성 정보를 정확히 파악하기 어렵다는 한계를 가지고 있다. 그러므로 본 연구는 기존 감성 특징들을 독립적으로 고려하는 것뿐만 아니라 문장 내에서 출현하는 감성들을 의미적으로 연결하여 하나의 패턴으로 정의한 감성 패턴을 제안하고, 감성 분석의 세부 연구 주제인 평점 추론에 감성 패턴을 새로운 감성 특징으로 사용하였다. 제안하는 감성 패턴의 효과를 검증하기 위해 영화평에 대한 평점 추론 실험을 수행하였다. 감성 패턴을 포함한 모든 감성 특징들을 사전에 정의한 학습 영화평들로부터 추출하고, 이를 확률 기법을 이용해 실험 영화평들의 평점을 추론하였다. 그 결과 감성 패턴을 사용하였을 경우 기존 감성 특징들만 사용했을 때 보다 추론한 평점이 더욱 정확함을 확인하였다.

Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안 (Effective Korean sentiment classification method using word2vec and ensemble classifier)

  • 박성수;이건창
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.133-140
    • /
    • 2018
  • 감성 분석에서 정확한 감성 분류는 중요한 연구 주제이다. 본 연구는 최근 많은 연구가 이루어지는 word2vec과 앙상블 방법을 이용하여 효과적으로 한국어 리뷰를 감성 분류하는 방법을 제시한다. 연구는 20 만 개의 한국 영화 리뷰 텍스트에 대해, 품사 기반 BOW 자질과 word2vec를 사용한 자질을 생성하고, 두 개의 자질 표현을 결합한 통합 자질을 생성했다. 감성 분류를 위해 Logistic Regression, Decision Tree, Naive Bayes, Support Vector Machine의 단일 분류기와 Adaptive Boost, Bagging, Gradient Boosting, Random Forest의 앙상블 분류기를 사용하였다. 연구 결과로 형용사와 부사를 포함한 BOW자질과 word2vec자질로 구성된 통합 자질 표현이 가장 높은 감성 분류 정확도를 보였다. 실증결과, 단일 분류기인 SVM이 가장 높은 성능을 나타내었지만, 앙상블 분류기는 단일 분류기와 비슷하거나 약간 낮은 성능을 보였다.

감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템 (A Korean Sentence and Document Sentiment Classification System Using Sentiment Features)

  • 황재원;고영중
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.336-340
    • /
    • 2008
  • 최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.

감정 단어의 의미적 특성을 반영한 한국어 문서 감정분류 시스템 (A Korean Document Sentiment Classification System based on Semantic Properties of Sentiment Words)

  • 황재원;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권4호
    • /
    • pp.317-322
    • /
    • 2010
  • 본 논문은 감정단어(Sentiment Word)의 의미적 특성을 반영하여 한국어 문서 감정분류 시스템의 성능을 향상시킬 수 있는 방법을 제안한다. 감정단어는 감정을 가지는 단어를 의미하며, 감정단어들의 집합은 감정자질(Sentiment Feature)로써 감정분류를 위한 중요한 어휘 자원이다. 감정자질은 일반적으로 사용될 때와 특정 영역(Domain)에서 사용될 때에 그 감정 정도의 차이를 가진다. 감정자질이 일반적으로 사용될 때 그 감정 정도는 검색 엔진을 통해 얻을 수 있는 스니핏(Snippet)을 통해 추정할 수 있으며, 특정 영역에서 사용될 때의 감정 정도는 실험 말뭉치를 이용하여 추정할 수 있다. 이렇게 추정된 감정자질의 감정 정도 수치를 의미지향성이라고 하며, 문서내의 문장의 감정 강도를 추정하기 위해 이용된다. 문장의 감정 강도가 추정되면 문장 감정 강도를 감정자질의 가중치에 반영하게 된다. 본 논문은 지지 벡터 기계(Support Vector Machine)를 이용하여 일반적, 영역 의존적, 일반적/영역 의존적 의미지향성을 반영한 경우에 대해 성능을 평가한다. 평가 결과, 앞의 3가지 경우에 모두 성능 향상을 얻었으며 일반적/영역 의존적 의미지향성을 반영한 경우, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능 향상을 얻을 수 있었다.

소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구 (Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis)

  • 강창민;어균선;이건창
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.1-19
    • /
    • 2022
  • 온라인 사용자들이 소셜 미디어상에 올린 온라인 리뷰 속 숨겨진 감정을 분석하는 감성분석은 소셜미디어의 확산에 힘입어 많은 관심을 받고 있다. 본 연구는 기존 연구들과 차별화된 방법으로 감성분석을 시도하기 위하여 베이지안 네트워크에 기반한 감성 분석 모델을 제안한다. 모델에는 MBFS(Markov Blanket-based Feature Selection)가 속성 선택 기법으로 사용된다. MBFS의 성과를 실증적으로 증명하기 위하여 소셜미디어인 Yelp의 리뷰 데이터를 활용하였다. 벤치마킹 속성 선택 기법으로는 상관관계기반 속성 선택, 정보획득 속성 선택, 획득비율 속성 선택을 사용하였다. 한편, 해당 속성선택방법을 토대로 4개의 머신러닝 알고리즘을 이용하여 분류성과를 비교하였다. 나아가 MBFS로 선택된 속성들 간 인과관계를 확인하고자 베이지안 네트워크를 통해 What-if 분석을 실시하였다. 본 연구에서 택한 머신러닝 분류기는 베이지안 네트워크 기반의 TAN (Tree Augmented Naive Bayes), NB (Naive Bayes), S-Spouses(Sons & Spouses), A-markov (Augmented Markov Blanket)이다. 성과분석 결과 본 연구에서 제안한 MBFS 방법이 정확도, 정밀도, F1점수 측면에서 벤치마킹 방법보다 더 우수한 성과를 나타내었다.

강건한 한국어 상품평의 감정 분류를 위한 패턴 기반 자질 추출 방법 (A Robust Pattern-based Feature Extraction Method for Sentiment Categorization of Korean Customer Reviews)

  • 신준수;김학수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권12호
    • /
    • pp.946-950
    • /
    • 2010
  • 기계 학습 기반의 많은 감정 분류 시스템들은 문장으로부터 언어적 자질을 추출하기 위하여 형태소 분석기를 사용한다. 그러나 온라인 상품평에는 많은 띄어쓰기 오류 및 철자 오류가 포함되어 있어서 일반적으로 형태소 분석기가 좋은 성능을 내기 어려우며, 기반 시스템의 낮은 성능은 감정 분류 시스템의 성능하락을 초래한다. 이러한 문제를 해결하기 위하여 본 논문에서는 어절 패턴과 음운 패턴의 최장 일치 매칭(matching)에 기반한 자질 추출 방법을 제안한다. 두 종류의 패턴은 대용량의 품사 부착 말뭉치로부터 자동으로 구축된다. 어절 패턴은 영사, 동사와 같은 내용어를 포함하는 어절들로 구성되며, 음운 패턴은 동사나 형용사와 같은 용언의 초성과 중성의 쌍으로 구성된다. 음운 패턴에 초성과 중성만을 사용한 이유는 철자 오류에 영향을 덜 받기 때문이다. 제안 방법을 평가하기 위하여 SVM(Support Vector Machine)을 기계 학습기로 사용하는 감정 분류 시스템을 구현하였다. 한국어 상품평에 대한 실험에서 제안 방법을 자질 추출 모듈로 사용하는 감정 분류 시스템이 형태소 분석기를 사용하는 것보다 우수한 성능을 보였다.

Sentiment Analysis Main Tasks and Applications: A Survey

  • Tedmori, Sara;Awajan, Arafat
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.500-519
    • /
    • 2019
  • The blooming of social media has simulated interest in sentiment analysis. Sentiment analysis aims to determine from a specific piece of content the overall attitude of its author in relation to a specific item, product, brand, or service. In sentiment analysis, the focus is on the subjective sentences. Hence, in order to discover and extract the subjective information from a given text, researchers have applied various methods in computational linguistics, natural language processing, and text analysis. The aim of this paper is to provide an in-depth up-to-date study of the sentiment analysis algorithms in order to familiarize with other works done in the subject. The paper focuses on the main tasks and applications of sentiment analysis. State-of-the-art algorithms, methodologies and techniques have been categorized and summarized to facilitate future research in this field.

Comparing Machine Learning Classifiers for Movie WOM Opinion Mining

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3169-3181
    • /
    • 2015
  • Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.