• Title/Summary/Keyword: Sensor viewer

Search Result 24, Processing Time 0.021 seconds

Color Enhancement of TV Picture Using Optical Sensor (광 센서를 이용한 TV 화상의 색 향상)

  • 이응주;김경만;박양우;정인갑;하영호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.69-74
    • /
    • 1995
  • An object color can be seen differently under the various outer illuminants. However, human visual system has color constancy that the object color can be seen constantly under the different outer illuminants. When the viewer watches TV under specific outer illuminants, he perceives distorted color due to the emitting spectrum of outer illuminants as well as the radiation of CPT itself. Namely, when the outer illuminants such as fluorescent and incandescent lamps incident on CPT, brightness, saturation, hue, and contrast on color pictures are changed, he perceives distorted color from the original color. In this paper color enhancement algorithm based on light intensity and outer light decision function using RGB sensor was proposed. The implemented TV of proposed algorithm has higher visual quality at the view point of human visual system and more vivid than that of conventional color TV.

A Study on the Development of 3D Virtual Reality Campus Tour System for the Adaptation of University Life to Freshmen in Non-face-to-face Situation - Autonomous Operation of Campus Surrounding Environment and University Information Guide Screen Design Using Visual Focus Movement - (비대면 상황에서 신입생 대학생활적응을 위한 3차원 가상현실 캠퍼스 투어시스템 개발연구 - 시야초점의 움직임을 활용한 캠퍼스주변 환경의 자유로운 이동과 대학정보안내화면 GUI설계 -)

  • Lim, Jang-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.3
    • /
    • pp.59-75
    • /
    • 2021
  • This study aims to establish a foundation for autonomous driving on campus and communication of abundant university information in the HCI environment in a VR environment where college freshmen can freely travel around campus facilities. The purpose of this study is to develop a three-dimensional VR-style campus tour system to establish a media environment to provide abundant university information guidance services to freshmen in non-face-to-face situations. This study designed a three-dimensional virtual reality campus tour system to solve the problem of discontinuity in which VR360 filming space does not lead to space like reality, and to solve many problems of expertise in VR technology by constructing an integrated production environment of tour system. We aim to solve the problem of inefficiency, which requires a large amount of momentum in virtual space, by constructing a GUI that utilizes the motion of the field of view focus. The campus environment was designed as a three-dimensional virtual reality using a three-dimensional graphic design. In non-face-to-face situations, college freshmen freely transformed the HMD VR device, smartphone, FPS operation mode of the gyroscope sensor. The design elements of the three-dimensional virtual reality campus tour system were classified as ①Visualization of factual experiences, ②Continuity of space movement, ③Operation, automatic operation mode, ④Natural landscape animation, ⑤Animation according to wind direction, ⑥Actual space movement mode, ⑦Informatization of spatial understanding, ⑧GUI by experience environment, ⑨Text GUI by building, ⑩VR360, 3D360 Studio Environment, ⑪Three-dimensional virtual space coupling block module, ⑫3D360-3D Virtual Space Transmedia Zone, ⑬Transformable GUI(VR Device Dual Viewer-Gyro Sensor Full Viewer-FPS Operation Viewer) and an integrated production environment was established with each element. It is launched online (http://vautu.com/u1) by constructing a GUI for free driving mode and college information screens to adapt to college life for freshmen, and designing an environment that can be used simultaneously by current media such as PCs, Android, and iPads. Therefore, it conducted user research, held a development presentation, a forum on excellence in university innovation support projects, and applied it as a system on the website of a particular university. College freshmen will be able to experience university information directly from the web and app to the virtual reality campus environment.

A Study on the Design of IoT-based Thermal Sensor and Video Sensor Integrated Surveillance Equipment (IoT 기반 열상 센서와 영상 센서 일체형 감시 장비 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.9-13
    • /
    • 2019
  • In this paper, IoT based thermal sensor data and image sensor integrated environmental monitoring system for ship, and it is the monitoring system which can process and transmit the Full HD IP camera image and thermal data transmitted from the thermal module for processing and transmitting, and the viewer S/W is to be developed which provides in real time the information for actual surrounding temperature together with the image, and enables fire prediction which was impossible in the case of the existing equipment by estimating the temperature change as the thermal image is added to the image camera, and saves and analyzes all data while receiving the temperature data and image signal transmitted from the integrated thermal sensor environmental monitoring equipment for ship and displaying them as 2D on the monitoring system.

Realtime 3D Human Full-Body Convergence Motion Capture using a Kinect Sensor (Kinect Sensor를 이용한 실시간 3D 인체 전신 융합 모션 캡처)

  • Kim, Sung-Ho
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.189-194
    • /
    • 2016
  • Recently, there is increasing demand for image processing technology while activated the use of equipments such as camera, camcorder and CCTV. In particular, research and development related to 3D image technology using the depth camera such as Kinect sensor has been more activated. Kinect sensor is a high-performance camera that can acquire a 3D human skeleton structure via a RGB, skeleton and depth image in real-time frame-by-frame. In this paper, we develop a system. This system captures the motion of a 3D human skeleton structure using the Kinect sensor. And this system can be stored by selecting the motion file format as trc and bvh that is used for general purposes. The system also has a function that converts TRC motion captured format file into BVH format. Finally, this paper confirms visually through the motion capture data viewer that motion data captured using the Kinect sensor is captured correctly.

duoPIXTM X-ray Imaging Sensor Composing of Multiple Thin Film Transistors in a Pixel for Digital X-ray Detector (픽셀내 다수의 박막트랜지스터로 구성된 듀오픽스TM 엑스선 영상센서 제작)

  • Seung Ik, Jun;Bong Goo, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.969-974
    • /
    • 2022
  • In order to maximize dynamic range and to minimize image lag in digital X-ray imaging, diminishing residual parasitic capacitance in photodiode in pixels is critically necessary. These requirements are more specifically requested in dynamic X-ray imaging with high frame rate and low image lag for industrial 2D/3D automated X-ray inspection and medical CT imaging. This study proposes duoPIXTM X-ray imaging sensor for the first time that is composed of reset thin film transistor, readout thin film transistor and photodiode in a pixel. To verify duoPIXTM X-ray imaging sensor, designing duoPIXTM pixel and imaging sensor was executed first then X-ray imaging sensor with 105 ㎛ pixel pitch, 347 mm × 430 mm imaging area and 3300 × 4096 pixels (13.5M pixels) was fabricated and evaluated by using module tester and image viewer specifically for duoPIXTM imaging sensor.

Development of Multi-layer Pressure Sensor using PEDOT Vapor Phase Polymerization (PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발)

  • Lim, Seung Ju;Bae, Jong Hyuk;Jang, Seong Jin;Lim, Jee Young;Park, Keun Hae;Ko, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.186-191
    • /
    • 2018
  • Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.

Development of Small System for Mobile-Based Visible/NIR Animal Imaging (실험동물용 가시광선/근적외선 생체 이미징 소형 장비의 개발)

  • Eum, Nyeon-Sik;Park, Hee-Joon;Jung, Jin-Yong;Han, Jung-Hyun;Kim, Hyung-Kyung;Jang, Eun-Yoon;Lee, Suck-Jae;Kang, Byoung-Ho;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.270-275
    • /
    • 2012
  • In this study, we have developed a mobile-based visible/NIR(Near InfraRed) imaging equipment for the animal testing. This equipment can provide visible, NIR and merged image through the viewer program. Especially, merged image help researcher to understand visual messages at animal in-vivo test. Also, it is available to send real-time images through the smart phone. Researcher can communicate with another researcher who is a long distance away. Also, the equipment was made with portable small size to enable it to commercialize.

Construction and Application of a Web-EOC Based Real-Time Monitoring Management System in Steep Slopes (Web-EOC 기반 경사지 실시간 계측관리시스템 구축 및 적용)

  • LEE, Jin-Duk;CHANG, Ki-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.107-119
    • /
    • 2018
  • The slope monitoring systems which have been operating at home and abroad were investigated and then the real-time monitoring management system for evacuating inhabitants based on Web-EOC(Emergency Operating Center) was constructed. We tried to analyze realistically and precisely the situation by changing from the existing field-centered management to sensor-centered management that measures coordinates and provides in real-time data of measuring/monitoring sensors installed at a field site and developing related viewer programs. In addition, the 3D based monitoring management system, which has alarm functions in case of emergency and provides information about the evacuation place, was constructed on the base that is able to expand to nationwide fields by using Vworld 3D map. Ten steep slope monitoring sites were registered on Web-EOC slope monitoring management system constructed in the research and then application instances were suggested.

View Point Tracking for Parallax Barrier Display Using a Low Cost 3D Imager

  • Wi, Sung-Min;Kim, Dong-Wook
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.3
    • /
    • pp.105-114
    • /
    • 2008
  • We present an eye tracking system using a low cost 3D CMOS imager for 3D displays that ensures a correct auto stereoscopic view of position- dependent stereoscopic 3D images. The tracker is capable of segmenting the foreground objects (viewer) from background objects using their relative distance from the camera. The tracker is a novel 3D CMOS Image Sensor based on Time of Flight (TOF) principle using innovating photon gating techniques. The basic feature incorporates real time depth imaging by capturing the shape of a light-pulse front as it is reflected from a three dimensional object. The basic architecture and main building blocks of a real time depth CMOS pixel are described. For this application, we use a stereoscopic type of display using parallax barrier elements that is described as well.

  • PDF

Development of GIS Software for Connecting Functions between Geographic Information and URLs (지리정보와 URL 연동을 위한 GIS S/W 개발)

  • Kim, Bong-Je;Shin, Seong-Hyun;Hwang, Hyun-Suk;Lee, Jin-Wook;Kim, Chang-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2007
  • Recent Internet Service Environment has been moved to provide geographic information based on location as well as existent various information. In this paper, we develop an integrated software connecting GIS information to Internet. In the other hand, in GIS S/W, it is important that rapid output of Digital Map and effective trnasmission of specified Digital Map about moving area. To achieve the purpose, we propose a reduced digital format to diminish original digital maps. Also, we develop a GIS-based software engine with functions connecting location information to URL as well as map viewer and map handling. Futhermore, our developed GIS S/W is based Module in LBS application using GPS sensor.