• Title/Summary/Keyword: Sensor type

Search Result 2,719, Processing Time 0.03 seconds

Current Developments of Biomedical Mobile Devices for Ubiquitous Healthcare (u-Healthcare를 위한 바이오 단말기의 개발 현황)

  • Lee, Tae-Soo;Hong, Joo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Biomedical mobile devices for ubiquitous healthcare consist of biomedical sensors and communication terminal. They have two types of configuration. One is the sensor-network type device using wired or wireless communication with intelligent sensors to acquire biomedical data. The other is the sensor embedded type device, where the data can be acquired directly by itself. There are many examples of sensor network type, such as, fall detection sensor, blood glucose sensor, and ECG sensors networked with commercial PDA phone and commercial phone terminal for ubiquitous healthcare. On the other hand, sensor embedded type mounts blood glucose sensor, accelerometer, and etc. on commercial phone. However, to enable true ubiquitous healthcare, motion sensing is essential, because users go around anywhere and their signals should be measured and monitored, when they are affected by the motion. Therefore, in this paper, two biomedical mobile devices with motion monitoring function were addressed. One is sensor-network type with motion monitoring function, which uses Zigbee communication to measure the ECG, PPG and acceleration. The other is sensor-embedded type with motion monitoring function, which also can measure the data and uses the built-in cellular phone network modem for remote connection. These devices are expected to be useful for ubiquitous healthcare in coming aged society in Korea.

High Spatial Resolution Imaging of the Contiguous Objects Using Sub-Y-Type Interferometric Synthetic Aperture Radiometer

  • Lee Ho-Jin;Park Hyuk;Kim Sung-Hyun;Choi Jun-Ho;Seo Seung-Won;Kim Yong-Hoon;Kang Gum-Sil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.53-56
    • /
    • 2004
  • Recently the interferometric synthetic aperture radiometer with sub-Y-type antenna array was suggested to improve the spatial resolution than that of conventional Y-type with the same number of antenna elements. The sub-Y-type performance has been reported under a point source target. In this paper, the performance of sub-Y-type is evaluated under contiguous objects. The angular resolution of sub-Y-type with 52 antennas was compared with that of Y-type with the 40 antennas. The images of sub-Y -type and Y-type array were simulated under the contiguous objects. The sub-Y-type showed higher resolution than Y-type in the simulation and experiments. The sub-Y-type has high spatial resolution than Y-type in case of contiguous source as well as single point source.

  • PDF

A Disk-type Capacitive Sensor for Five-dimensional Motion Measurements (5 차원 변위 측정용 원판형 정전용량 센서)

  • Ahn, Hyeong-Joon;Park, Jung-Ho;Um, Chang-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.655-662
    • /
    • 2007
  • This paper presents a disk-type capacitive sensor for simultaneous measurement of five-dimensional motions of a target. The sensor can be manufactured with a printed circuit board (PCB) such that the sensor can be integrated with its electronics in a single PCB board, whereby the manufacturing costs is considerably reduced. The sensor is optimally designed through an error analysis of possible mechanical errors. Furthermore, the sensor can correct the horizontal motion measurement errors due to the sensor installation tilting error. A proto-type PCB sensor, electronics and a test rig were built, and the effectiveness of the developed sensor was proved through experiments.

  • PDF

Development of Plastic Film Type Submersion Sensor (플라스틱 필름형 침수센서 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.107-111
    • /
    • 2022
  • In this paper, a plastic film type submersion sensor capable of measuring submersion speed was developed. This submersion sensor is designed as a capacitive type, and it is a sensor that outputs the change in capacitance between the electrode of the submersion sensor and the grounded body as a voltage through a C-V(capacitance-voltage) converter. We developed an submersion sensor in which two electrodes of different lengths are connected in parallel to measure the submersion speed accurately by minimizing the influence of noise such as contamination. When both electrodes of the submersion sensor are exposed to water, the rate of change of water level suddenly increases, so the submersion speed is measured by measuring the time to this point. Since the difference in length between the two electrodes of the submersion sensor does not change in any case, it is possible to accurately measure the submersion speed.

CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation

  • Lee, Junwoo;Choi, Byoung-Soo;Seong, Donghyun;Lee, Jewon;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo;Choi, Pyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.362-367
    • /
    • 2018
  • A complementary metal oxide semiconductor (CMOS) binary image sensor is proposed for low-power and low-noise operation. The proposed binary image sensor has the advantages of reduced power consumption and fixed pattern noise (FPN). A gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector is used as the proposed CMOS binary image sensor. The GBT PMOSFET-type photodetector has a floating gate that amplifies the photocurrent generated by incident light. Therefore, the sensitivity of the GBT PMOSFET-type photodetector is higher than that of other photodetectors. The proposed CMOS binary image sensor consists of a pixel array with $394(H){\times}250(V)$ pixels, scanners, bias circuits, and column parallel readout circuits for binary image processing. The proposed CMOS binary image sensor was analyzed by simulation. Using the dynamic comparator, a power consumption reduction of approximately 99.7% was achieved, and this performance was verified by the simulation by comparing the results with those of a two-stage comparator. Also, it was confirmed using simulation that the FPN of the proposed CMOS binary image sensor was successfully reduced by use of the double sampling process.

Development of Capacitive-type Pressure Mapping Sensor using Printing Technology

  • Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.24-27
    • /
    • 2017
  • In this study, I developed a simple and low cost process-printing a silver, carbon, dielectric, adhesive layer on PET films using screen printing technology and bonding the two films face-to-face-to fabricate a low price capacitive pressure-mapping sensor. Both electrodes forming the pressure measuring capacitor are arranged between the two PET films similar to a sandwich. Therefore, the sensor has the advantage of minimizing the influence of external noise. In this study, a $10{\times}10$ capacitance-type pressure-mapping sensor was fabricated and its characteristics were analyzed.

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

Development of Plastic Film Type Water Level Sensor for High Temperature (고온용 플라스틱 필름 수위 센서 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.124-128
    • /
    • 2019
  • In this paper, a high temperature plastic film type water level sensor was developed. The high temperature film type water level sensor was manufactured by attaching a copper film to a polyimide film which can be used for a long time at 250℃, by laminating process and patterning the electrode by etching process. For the performance evaluation of the developed film type water level sensor, the temperature dependence of the capacitance was measured, and the deformation was examined after standing for 8 hours in 150℃ air. The developed film type water level sensor can be used at up to 150℃, and can be applied to electric ports and steam devices.