• 제목/요약/키워드: Sensor placement

검색결과 150건 처리시간 0.029초

화학물질의 누출에서 빠른 감지를 위한 센서 배치 최적화 (Optimal Sensor Placement for Rapid Detecting in Chemical Leak Accident)

  • 조재훈;김현승;김태옥;신동일
    • 한국가스학회지
    • /
    • 제20권2호
    • /
    • pp.66-71
    • /
    • 2016
  • 현재 산업단지에는 수많은 센서로부터 얻는 정보를 이용해 누출 발생지역을 감지 감시하고 있다. 그러나 화학물질 누출사고는 꾸준히 발생하고 있으며, 때에 따라 다량의 화학물질이 누출되는 경우에는 큰 피해가 발생하고 있다. 이때 중요하게 작용하는 센서 배치가 현재까지는 과거의 경험을 통하여 그 결정이 이루어지거나, 또는 센서제작 업체에서 제시하는 가이드를 통하여 설치되고 있다. 따라서 본 연구에서는 화학물질 누출이 일어났을 때 빠른 감지 및 대응을 위해 가장 중요한 요소인 센서 배치 최적화 방법론을 제시하였다. 특히 공정구조에 따른 누출흐름이 미반영된 상태에서 초기 배치 최적화를 위해 센서 개수 최소화 측면과 화학물질감지확률 측면으로 나누어 일반적으로 사용할 수 있는 수식을 제시하였다. 제시된 방법은 간단한 누출 시나리오를 이용하여 검증을 진행하였고, 이를 통해 각 공정의 안전성 목표치를 성취함으로써 안전한 공정 운영이 가능하도록 하였다.

D-최적 실험 설계 기반 최적 센서 배치 및 모델 확장 기법을 이용한 하중 추정 (Load Recovery Using D-Optimal Sensor Placement and Full-Field Expansion Method)

  • 변성주;이승재;부승환
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.115-124
    • /
    • 2024
  • To detect and prevent structural damage caused by various loads on marine structures and ships, structural health monitoring procedure is essential. Estimating loads acting on the structures which are measured by sensors that are mounted properly are crucial for structural health monitoring. However, attaching an excessive number of sensors to the structure without consideration can be inefficient due to the high costs involved and the potential for inducing structural instability. In this study, we introduce a method to determine the optimal number of sensors and their optimized locations for strain measurement sensors, allowing for accurate load estimation throughout the structure using model expansion method. To estimate the loads exerted on the entire structure with minimal sensors, we construct a strain-load interpolation matrix using the strain mode shapes of the finite element (FE) model and select the optimal sensor locations by applying D-Optimal Design and the row exchange algorithm. Finally, we estimate the loads exerted on the entire structure using the model expansion method. To validate the proposed method, we compare the results obtained by applying the optimal sensor placement and model expansion method to an FE model subjected to arbitrary loads with the loads exerted on the entire FE model, demonstrating efficiency and accuracy.

RFID를 이용한 이동체의 위치 결정에서 리더 태그간 인식율 연구 (A Study on Reader and Tag Sensing Rate of Location Detection Using RFID)

  • 전성희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.33-34
    • /
    • 2007
  • LBS has many issues of wireless sensor networks and mobile communication parts. Location tracking or location sensing will be the opening of ubiquitous society's a big challenge and the beginning of infinite ubiquitous society's a chance. The purpose of this paper is study of sensing rate per reader antenna's placement and tag location and placement using RFID as location reference point with many advantages for location detection.

  • PDF

모델보정을 위한 구조물 매개변수 규명시 가진점 .측정점의 선정 (Excitation and Measurement Points Selection to Identify Structural Parameters for Model Tuning)

  • 박남규;박윤식
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1271-1280
    • /
    • 2000
  • A sensor placement technique to identify structural parameter was developed. Experimental results must be acquired to identify unknown dynamic characteristics of a targeting structure for the comparison between analytical model and real structure. If the experimental environment was not equipped itself properly, it can be happened that some valuable information are distorted or ill-condition can be occurred. In this work the index to determine exciting points was derived from the criterion of maximizing parameter sensitivity matrix and that to choose measurement points was from that of preserving the invariant of sensitivity matrix. This idea was applied to a compressor hull structure to verify its performance. The result shows that the selection of measurement and excitation points using suggested criteria improve the ill-conditioning problem of inverse type problems such , as model updating.

다중 입력 규명을 위한 센서의 위치 선정에 관한 연구 ; 주파수 응답 행렬의 직교성 응용 (A STUDY ON THE SENSOR PLACEMENT TO IDENTIFY MULTIPLE INPUT FORCES USING ORTHOGONALITY OF FREQUENCY RESPONSE MATRIX)

  • 박남규;박용화;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.102-109
    • /
    • 1997
  • A study to determine a proper sensor placement was developed to improve force identification. Improper selection of response position cause erroneous result in force identification problem. This paper presents two methods to improve the conditioning of the system's FRM(Frequency Response Matrix) which affects the accuracy of result. The basic strategy of the two methods in selecting the response position is to let the smallest singular value be as large as possible by maximizing the orthogonality of FRM. The suggested methods are tested numerically with a fixed-fixed beam model. The test results show that the proposed methods are very effective in dealing with the force identification problem.

  • PDF

Health monitoring sensor placement optimization for Canton Tower using virus monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1373-1392
    • /
    • 2015
  • Placing sensors at appropriate locations is an important task in the design of an efficient structural health monitoring (SHM) system for a large-scale civil structure. In this paper, a hybrid optimization algorithm called virus monkey algorithm (VMA) based on the virus theory of evolution is proposed to seek the optimal placement of sensors. Firstly, the dual-structure coding method is adopted instead of binary coding method to code the solution. Then, the VMA is designed to incorporate two populations, a monkey population and a virus population, enabling the horizontal propagation between the monkey and virus individuals and the vertical inheritance of monkey's position information from the previous to following position. Correspondingly, the monkey population in this paper is divided into the superior and inferior monkey populations, and the virus population is divided into the serious and slight virus populations. The serious virus is used to infect the inferior monkey to make it escape from the local optima, while the slight virus is adopted to infect the superior monkey to let it find a better result in the nearby area. This kind of novel virus infection operator enables the coevolution of monkey and virus populations. Finally, the effectiveness of the proposed VMA is demonstrated by designing the sensor network of the Canton Tower, the tallest TV Tower in China. Results show that innovations in the VMA proposed in this paper can improve the convergence of algorithm compared with the original monkey algorithm (MA).

Reproduction of vibration patterns of elastic structures by block-wise modal expansion method (BMEM)

  • Jung, B.K.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.819-837
    • /
    • 2016
  • The quality of vibration pattern reproduction of elastic structures by the modal expansion method is influenced by the modal expansion method and the sensor placement as well as the accuracy of measured natural modes and the total number of vibration sensors. In this context, this paper presents an improved numerical method for reproducing the vibration patterns by introducing a block-wise modal expansion method (BMEM), together with the genetic algorithm (GA). For a given number of vibration sensors, the sensor positions are determined by an evolutionary optimization using GA and the modal assurance criterion (MAC). Meanwhile, for the proposed block-wise modal expansion, a whole frequency range of interest is divided into several overlapped frequency blocks and the vibration field reproduction is made block by block with different natural modes and different modal participation factors. A hollow cylindrical tank is taken to illustrate the proposed improved modal expansion method. Through the numerical experiments, the proposed method is compared with several conventional methods to justify that the proposed method provides the improved results.

진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교평가 (The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery)

  • 오승태;유무상;봉석근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.314-320
    • /
    • 2014
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external keyphasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

  • PDF

진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교 평가 (The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery)

  • 오승태;유무상;봉석근
    • 한국소음진동공학회논문집
    • /
    • 제25권2호
    • /
    • pp.101-107
    • /
    • 2015
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external KeyPhasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

사장교의 상시감시를 위한 최적 센서 구성 (Optimal Sensor Allocation of Cable-Stayed Bridge for Health Monitoring)

  • 허광희;최만용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.145-155
    • /
    • 2002
  • It is essential for health monitoring of a cable-stayed bridge to provide more accurate and enough information from the sensors. In experimental modal testing, the chosen measurement locations and the number of measurements have a major influence on the quality of the results. The choice is often difficult for complex structures like a cable-stayed bridge. It is extremely important a cable-stayed bridge to minimize the number of sensing operations required to monitor the structural system. In order to obtain the desired accuracy for the structural test, several issues must take into consideration. Two important issues are the number and location of response sensors. There are usually several alternative locations where different sensors can be located. On the other hand, the number of sensors might be limited due to economic constraints. Therefore, techniques such as methodologies, algorithms etc., which address the issue of limited instrumentation and its effects on resolution and accuracy in health monitoring systems are paramount to a damage diagnosis approach. This paper discusses an optimum sensor placement criterion suitable to the identification of structural damage for continuous health monitoring. A Kinetic Energy optimization technique and an Effective Independence Method are analyzed and numerical and theoretical issues are addressed for a cable-stayed bridge. Its application to a cable-stayed bridge is discussed to optimize the sensor placement for identification and control purposes.