• Title/Summary/Keyword: Sensor linearity

Search Result 434, Processing Time 0.029 seconds

Fabrication of a Micromachined Metal Thin-film Type Pressure Sensor for High Overpressure Tolerance and Its Characteristics (과부하 방지용 마이크로머시닝 금속 박막형 압력센서의 제작과 그 특성)

  • Kim, Jae-Min;Lim, Byoung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.192-196
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a metal thin-film pressure sensor based on Cr strain-gauges for harsh environment applications. The Cr thin-film strain-gauges are sputter-deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single-crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Cr thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097~1.21 $mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Implementation of weight sensor with polarization maintaining photonic crystal fiber (편광유지 광결정 광섬유를 이용한 무게센서)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.133-138
    • /
    • 2015
  • A weight sensor with a polarization maintaining photonic crystal fiber (PCF) is proposed and investigated by experimentally. The sensor system consists of a 3 dB fiber coupler, a half-wave plate, and light source. Wavelength shift induced by weight acting on the polarization maintaining PCF was measured. Two types of sensor patterns, circle type and straight type, were implemented and evaluated. The sensitivity of straight line type was 680 pm/kg and the circle type was 270 pm/kg, respectively. The both types of sensors have a good sensitivity and good linearity in the wide range.

Sensing Properties of Hydrogen Gas for the MWCNT Thin Film Sprayed on the Glass Substrate Cured with Plasma and Nitrocellulose (플라즈마 및 니트로셀롤로우스로 처리된 유리기판을 사용한 MWCNT 스프레이 박막의 수소가스 검출특성)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.290-296
    • /
    • 2011
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as a resistive gas sensors for the $H_2$ gas detection. Sensor films were fabricated by the air spray method using the multi-walled CNTs dispersion solution on the glass substrates cured with plasma and nitrocellulose. Sensors were characterized by the resistance measurements in the self-fabricated oven in order to find the optimum detection properties for the hydrogen gas molecular. The sensitivity and the linearity of the MWVNT sensors using the glass substrate cured with plasma for the $H_2$ gas concentration of 0.06~0.6 ppm are 0.013~0.097%/sec and 0.131~0.959%FS, respectively. The MWCNT film was excellent in the response for the hydrogen gas moleculars and its reaction speed was very fast, which could be using as hydrogen gas sensor. The resistance of the fabricated sensors decreases when the sensors are exposed to $H_2$ gas.

Development of Radiation Sensor Based on Array SiPM for Measurement of Radioactive Contamination in Effluent (방류수의 방사능 오염 측정을 위한 배열형 SiPM 기반 방사선 검출 센서 제작)

  • Kim, Jeongho;Park, Hyemin;Joo, Koansik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.232-236
    • /
    • 2018
  • A radiation detection sensor was developed and characterized by combining three types of CsI(Tl) scintillators and an array-type SiPM to detect the radioactive contamination of discharged water in real time. The characterization results showed that type 3 exhibited the most desirable characteristics in response linearity (R-square: 0.97889) according to detection sensitivity and incident radiation dose. Furthermore, in terms of spectral characteristics, type 3 exhibited 16.54% at 0.356 MeV (the emission gamma ray energy of $^{133}Ba$), 10.28% at 0.511 MeV (the emission gamma ray energy of $^{22}Na$), 9.68% at 0.356 MeV (the emission gamma ray energy of $^{137}Cs$), and 2.55% and 4.80% at 1.173 MeV and 1.332 MeV (the emission gamma ray energies of $^{60}Co$), respectively. These measurements confirmed the good energy characteristics. The results were used to evaluate the spectral characteristics and energy linearity in a mixed source using type 3 with the best detection characteristics. It was confirmed that the gamma ray peaks of $^{133}Ba$, $^{22}Na$, $^{137}Cs$, and $^{60}Co$ were well resolved. Moreover, it was confirmed that R-square, which is an indicator of energy linearity, was 0.99986. This indicates a good linearity characteristic. Based on this study, further commercialization studies will contribute to measurements in real time and to the management of the contamination caused by radioactive wastewater or radioactive material leakage, which originate from facilities that use radioactive isotopes or care facilities.

A study on stabilization of a fiber-optic current sensor using sagnac interferometer (Sagnac 간섭계형 광섬유 전류센서의 안정화 연구)

  • 정래성;강현서;이종훈;송정태;이경식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.94-99
    • /
    • 1997
  • A new method of stbilizing the sagnac interferometric fiber optic current sensor inteh presence of birefringences and phase is presented. This method is realized by dividing the output of the ac current signal with the modulation signal output. Using the technique the stability of the current sensor was improve dmore than 4.5 times at 800Arms for 2 hours. The current sensor also shows good linearity up to 100Arms.

  • PDF

Two-Chip Integrated Humidity Sensor using Ployimide (폴리이미드를 이용한 투 칩 집적화 습도 센서)

  • Min, Nam-Ki;Kim, Soo-Won;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1311-1313
    • /
    • 1997
  • We describe the working principle, the design, and the characteristics of two-chip integrated humidity sensor. The sensing element was manufactured using polyimide. The interface circuits were developed based on a charge redistribution between capacitors. The sensor and signal conditioning chips were packaged together in the same package. The sensor showed excellent linearity over a wide range of relative humidity.

  • PDF

A Non-Linearity Compensation Method for Matrix Converter Drives Using PQR Power Theory (PQR 전력이론을 이용한 Matrix Converter 구동 시스템의 비선형특성 보상)

  • Lee Kyo-Beum
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.751-758
    • /
    • 2004
  • This paper presents a new method to compensate the non-linearity for matrix converter drives using PQR instantaneous Power theory. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled by PQR power theory and compensated using a reference current control scheme. The proposed method does not need any additional hardware and off-line experimental measurements. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Simulation and experimental results show the proposed method using PQR power theory Provides good compensating characteristic.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

The Fabrication of a Micromachined Ceramic Thin-Film Pressure Sensor with High Overpressure Tolerance (과부하 방지용 마이크로머시닝 세라믹 박막형 압력센서의 제작)

  • Lim, Byoung-Kwon;Choi, Sung-Kyu;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Ta-N thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability. The sensitivity is $1.097{\sim}1.21mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF