• 제목/요약/키워드: Sensor fusion

검색결과 815건 처리시간 0.028초

센서융합에 의한 이동로봇의 주행성 연구 (A Study In Movement of Wheeled Mobile Robot Via Sensor Fusion)

  • 신회석;홍석교;좌동경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.584-586
    • /
    • 2005
  • In this paper, low cost inertial sensor and compass were used instead of encoder for localization of mobile robot. Movements by encoder, movements by inertial sensor and movements by complementary filter with inertial sensor and compass were analyzed. Movement by complementary filter was worse than by only inertial sensor because of imperfection of compass. For the complementary filter to show best movements, compass need to be compensated for position error.

  • PDF

삽입 작업에서 퍼지추론에 의한 비젼 및 힘/토오크 센서의 퓨젼 (Vision and force/torque sensor fusion in peg-in-hole using fuzzy logic)

  • 이승호;이범희;고명삼;김대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.780-785
    • /
    • 1992
  • We present a multi-sensor fusion method in positioning control of a robot by using fuzzy logic. In general, the vision sensor is used in the gross motion control and the force/torque sensor is used in the fine motion control. We construct a fuzzy logic controller to combine the vision sensor data and the force/torque sensor data. Also, we apply the fuzzy logic controller to the peg-in-hole process. Simulation results uphold the theoretical results.

  • PDF

청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구 (A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function)

  • 강진구
    • 디지털산업정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

차량정밀측위를 위한 복합측위 기술 동향 (Overview of sensor fusion techniques for vehicle positioning)

  • 박진원;최계원
    • 한국전자통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.139-144
    • /
    • 2016
  • 본 논문에서는 차량정밀측위를 위한 센서융합 기술의 최근 동향에 대해 다룬다. GNSS 만으로는 자율주행에서 요구하는 정밀측위의 정확도 및 신뢰도를 만족시킬 수 없다. 본 논문에서는 GNSS와 주행계, 자이로스코프 등의 관성항법 센서를 결합하는 복합측위 기술을 소개한다. 또한 라이다 및 스테레오 비전에서 탐지된 랜드마크를 정밀지도에 수록된 정보와 매칭시키는 측위 기법의 최근 동향을 소개한다.

비행시험통제컴퓨터용 실시간 데이터 융합 알고리듬의 구현 (Implementation of a Real-time Data fusion Algorithm for Flight Test Computer)

  • 이용재;원종훈;이자성
    • 한국군사과학기술학회지
    • /
    • 제8권4호
    • /
    • pp.24-31
    • /
    • 2005
  • This paper presents an implementation of a real-time multi-sensor data fusion algorithm for Flight Test Computer. The sensor data consist of positional information of the target from a radar, a GPS receiver and an INS. The data fusion algorithm is designed by the 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad measurements and sensor faults. The statistical parameters for the states are obtained from Monte Carlo simulations and covariance analysis using test tracking data. The designed filter is verified by using real data both in post processing and real-time processing.

Hierarchical Behavior Control of Mobile Robot Based on Space & Time Sensor Fusion(STSF)

  • Han, Ho-Tack
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.314-320
    • /
    • 2006
  • Navigation in environments that are densely cluttered with obstacles is still a challenge for Autonomous Ground Vehicles (AGVs), especially when the configuration of obstacles is not known a priori. Reactive local navigation schemes that tightly couple the robot actions to the sensor information have proved to be effective in these environments, and because of the environmental uncertainties, STSF(Space and Time Sensor Fusion)-based fuzzy behavior systems have been proposed. Realization of autonomous behavior in mobile robots, using STSF control based on spatial data fusion, requires formulation of rules which are collectively responsible for necessary levels of intelligence. This collection of rules can be conveniently decomposed and efficiently implemented as a hierarchy of fuzzy-behaviors. This paper describes how this can be done using a behavior-based architecture. The approach is motivated by ethological models which suggest hierarchical organizations of behavior. Experimental results show that the proposed method can smoothly and effectively guide a robot through cluttered environments such as dense forests.

비 정규 분포 잡음 채널에서 높은 신호 대 잡음비를 갖는 무선 센서 네트워크의 정보 융합 (Fusion of Decisions in Wireless Sensor Networks under Non-Gaussian Noise Channels at Large SNR)

  • 박진태;김기성;김기선
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.577-584
    • /
    • 2009
  • Fusion of decisions in wireless sensor networks having flexibility on energy efficiency is studied in this paper. Two representative distributions, the generalized Gaussian and $\alpha$-stable probability density functions, are used to model non-Gaussian noise channels. By incorporating noise channels into the parallel fusion model, the optimal fusion rules are represented and suboptimal fusion rules are derived by using a large signal-to-noise ratio(SNR) approximation. For both distributions, the obtained suboptimal fusion rules are same and have equivalent form to the Chair-Varshney fusion rule(CVR). Thus, the CVR does not depend on the behavior of noise distributions that belong to the generalized Gaussian and $\alpha$-stable probability density functions. The simulation results show the suboptimality of the CVR at large SNRs.

이동 물체를 추적하기 위한 감각 운동 융합 시스템 설계 (The Sensory-Motor Fusion System for Object Tracking)

  • 이상희;위재우;이종호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.181-187
    • /
    • 2003
  • For the moving objects with environmental sensors such as object tracking moving robot with audio and video sensors, environmental information acquired from sensors keep changing according to movements of objects. In such case, due to lack of adaptability and system complexity, conventional control schemes show limitations on control performance, and therefore, sensory-motor systems, which can intuitively respond to various types of environmental information, are desirable. And also, to improve the system robustness, it is desirable to fuse more than two types of sensory information simultaneously. In this paper, based on Braitenberg's model, we propose a sensory-motor based fusion system, which can trace the moving objects adaptively to environmental changes. With the nature of direct connecting structure, sensory-motor based fusion system can control each motor simultaneously, and the neural networks are used to fuse information from various types of sensors. And also, even if the system receives noisy information from one sensor, the system still robustly works with information from other sensors which compensates the noisy information through sensor fusion. In order to examine the performance, sensory-motor based fusion model is applied to object-tracking four-foot robot equipped with audio and video sensors. The experimental results show that the sensory-motor based fusion system can tract moving objects robustly with simpler control mechanism than model-based control approaches.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

레이더 센서와 비전 센서를 활용한 다중 센서 융합 기반 움직임 검지에 관한 연구 (A Study of Sensor Fusion using Radar Sensor and Vision Sensor in Moving Object Detection)

  • 김세진;변기훈;원인수;권장우
    • 한국ITS학회 논문지
    • /
    • 제16권2호
    • /
    • pp.140-152
    • /
    • 2017
  • 본 논문은 레이더 센서, 비전 센서를 활용한 다중 센서 융합 기반 움직임 검지에 관한 연구를 다룬다. 레이더 센서는 다량의 물체를 검지함에 있어 센서 자체의 움직임이 발생할 경우 주변건물이나 주변 가로수와 같은 사물 혹은 물체를 차량으로 오인하는 경우가 생긴다. 비전 센서의 경우 저렴하고 가장 많이 쓰는 형태이지만 빛, 흔들림, 날씨, 조도 등 외부환경에 취약하다는 문제점이 있다. 각 센서 간의 문제점을 보완하고자 센서 융합을 통한 움직임 검지를 제안하게 되었고 실험환경 내에서 매우 우수한 검지율을 보이게 되었다 센서 간 융합에서 좌표 통일문제와 실시간 전송문제 등을 해결하였으며, 각 센서 간 필터링을 통한 비가공데이터(raw data)의 신뢰성을 높였다. 특히 영상에서는 가우시안 혼합모델(GMM, Gaussian Mixture Model)을 사용하여 레이더 센서의 단점을 극복하고자 했다.