• Title/Summary/Keyword: Sensor fusion

Search Result 815, Processing Time 0.028 seconds

Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method (모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계)

  • Choi, Hyunjin;Yoo, Chang-Sun;Ryu, Hyeok;Kim, Sungwook;Ahn, Seokmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

The Weld Defects Expression Method by the Concept of Segment Splitting Method and Mean Distance (분할법과 평균거리 개념에 의한 용접 결함 표현 방법)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • In this paper, laser vision sensor is used to detect some defects any $co_{2}$ welded specimen in hardware. But, as the best expression of defects of welded specimen, the concept of segment splitting method and mean distance are introduced in software. The developed GUI software is used for deriding whether any welded specimen makes as proper shape or detects in real time. The criteria are based upon ISO 5817 as limits of imperfections in metallic fusion welds.

Maximum Likelihood (ML)-Based Quantizer Design for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.152-158
    • /
    • 2015
  • We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.

Data Association and Its Applications to Intelligent Systems: A Review (데이터 연관 문제와 지능시스템에서의 응용: 리뷰)

  • Oh, Song-Hwai
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • Data association plays an important role in intelligent systems. This paper presents the Bayesian formulation of data association and its applications to intelligent systems. We first describe the Bayesian formulation of data association developed for solving multi-target tracking problems in a cluttered environment. Then we review applications of data association in intelligent systems, including surveillance using wireless sensor networks, identity management for air traffic control, camera network localization, and multi-sensor fusion.

Complementary Filtering for the Self-Localization of Indoor Autonomous Mobile Robots (실내 자율형 주행로봇의 자기위치 추정을 위한 보상필터 설계)

  • Han, Jae-Won;Hwang, Jong-Hyon;Hong, Sung-Kyoung;Ryuh, Young-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1110-1116
    • /
    • 2010
  • This paper present an effective complementary filtering method using encoder and gyro sensors for the self-localization(including heading and velocity) of indoor mobile robot. The main idea of the proposed approach is to find the pros and cons of each sensor through a various maneuvering tests and to design of an adaptive complementary filter that works for the entire maneuvering phases. The proposed method is applied to an indoor mobile robot and the performances are verified through extensive experiments.

Design of Navigation Controller for Autonomous Mobile Robots using Kalman Filter (칼만필터를 사용한 자율주행로봇의 항법제어기 설계)

  • Choi, Kwang-Sup;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1807-1808
    • /
    • 2008
  • When it is used for autonomous mobile robots by using dead-reckoning system, odometry system with encorder is the simplest method as well as well-known in the industry. However, odometry system is reflected slide, friction and mechanical errors of wheels when operating the position estimation. And also in order to minimize errors of direction angle which is the most important factor that it is designed the controller in controlling kinematics and quadratic curve, PID that came into the values of sensor fusion with encorder and gyroscope sensor. After designing, the autonomous mobile robot is producted practically and inspected how it works.

  • PDF

A Study on the automatic Lane keeping control method of a vehicle based upon a perception net (퍼셉션 넷에 기반한 차량의 자동 차선 위치 제어에 관한 연구)

  • 부광석;정문영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.257-257
    • /
    • 2000
  • The objective of this research is to monitor and control the vehicle motion in order to remove out the existing safety risk based upon the human-machine cooperative vehicle control. A predictive control method is proposed to control the steering wheel of the vehicle to keep the lane. Desired angle of the steering wheel to control the vehicle motion could be calculated based upon vehicle dynamics, current and estimated pose of the vehicle every sample steps. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder though the Perception Net, where not only the state variables, but also the corresponding uncertainties were propagated in forward and backward direction in such a way to satisfy the given constraint condition, maintain consistency, reduce the uncertainties, and guarantee robustness. A series of experiments was conducted to evaluate the control performance, in which a car Like robot was utilized to quit unwanted safety problem. As the results, the robot was keeping very well a given lane with arbitrary shape at moderate speed.

  • PDF

Extended kalman filter design for autonomous navigation with GPS and INS sensor system fusion (GPS와 INS의 센서융합을 이용한 자율항법용 확장형 칼만필터 설계)

  • Yun, Duk-Sun;Yu, Hwan-Shin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

Behavior Planning for Humanoid Robot Using Behavior Primitive (행동 프리미티브 기반 휴머노이드 로봇의 행동 계획)

  • Noh, Su-Hee;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.108-114
    • /
    • 2009
  • In this paper, we presents a behavior planning for humanoid robots using behavior primitive in 3 dimensional workspace. Also, we define behavior primitives that humanoid robot accomplishes various tasks effectively. Humanoid robot obtains information of the outside environment and its inner information from various sensors in complex workspace with various obstacles. We verify our approach on a developed small humanoid robot using embedded vision and sensor system in a experimental environment. The experimental results show that the humanoid robot performs its tasks fast and effectively.

Characterization of Protein Factor Regulating the Superoxide-Sensor SoxR in Escherichia coli

  • Koo, Mi-Sun;Rah, So-Yeon;Lee, Kang-Lok;Roe, Jung-Hye
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.64-64
    • /
    • 2001
  • Escherichia coli has developed soxRS regulon to defend against toxicity of superoxide radical. SoxR, superoxide sensor, is oxidized by superoxide-generating agents or nitric oxide and oxidized SoxR activates the transcription of soxS gene. In order to find out the trans-acting factors regulating SoxR activity in vivo, soxS::lacZ single copy operon fusion construct was prepared and random Tn10 insertional mutatons were performed.(omitted)

  • PDF