• Title/Summary/Keyword: Sensor fault diagnosis

Search Result 153, Processing Time 0.032 seconds

ESBL: An Energy-Efficient Scheme by Balancing Load in Group Based WSNs

  • Mehmood, Amjad;Nouman, Muhammad;Umar, Muhammad Muneer;Song, Houbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4883-4901
    • /
    • 2016
  • Energy efficiency in Wireless Sensor Networks (WSNs) is very appealing research area due to serious constrains on resources like storage, processing, and communication power of the sensor nodes. Due to limited capabilities of sensing nodes, such networks are composed of a large number of nodes. The higher number of nodes increases the overall performance in data collection from environment and transmission of packets among nodes. In such networks the nodes sense data and ultimately forward the information to a Base Station (BS). The main issues in WSNs revolve around energy consumption and delay in relaying of data. A lot of research work has been published in this area of achieving energy efficiency in the network. Various techniques have been proposed to divide such networks; like grid division of network, group based division, clustering, making logical layers of network, variable size clusters or groups and so on. In this paper a new technique of group based WSNs is proposed by using some features from recent published protocols i.e. "Energy-Efficient Multi-level and Distance Aware Clustering (EEMDC)" and "Energy-Efficient Multi-level and Distance Aware Clustering (EEUC)". The proposed work is not only energy-efficient but also minimizes the delay in relaying of data from the sensor nodes to BS. Simulation results show, that it outperforms LEACH protocol by 38%, EEMDC by 10% and EEUC by 13%.

Simple Switch Open Fault Detection Method for Voltage Source Inverter (전압원 인버터의 간단한 스위치 개방 고장 감지 방법)

  • Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.430-438
    • /
    • 2008
  • Recently, permanent magnet synchronous motor are applied to various applications such as electric vehicle, aerospace, medical service and military applications due to several outstanding characteristics. Because of the importance of high reliable operation in these areas, many research related to the fault detection and diagnosis of inverter system are conducted. In this paper, new simple fault detection method of voltage source inverter for permanent magnet synchronous motor is proposed. The feasibility of the proposed method are improved by simulation and experiment. By the simulation and experiments, rapid detection characteristic of the proposed method has been proved without any additional voltage sensor.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

Detection of MIsfired Engine Cylinder by Using Directional Power Spectra of Vibration Signals (진동 신호의 방향 파워 스펙트럼을 이용한 엔진의 실화 실린더 탐지)

  • 한윤식;한우섭;이종원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 1993
  • A new signal processing technique is applied to four-cylinder spark and compression ignition engines for the diagnosis of power faults inside the cylinders. This technique utilizes two-sided directional power spectra(예S) of complex vibration signals measured from engine blocks as the patterns for engine cylinder power faults. The dPSs feature that they give not only the frequency contents but also the directivity of the engine block motion. For the automatic detection/diagnosis of cylinder power faults, pattern recognition method using multi-layer neural networks is employed. Experimental results show that the sucess rate for diagnosis of cylinder power faults using dPSs is higher than that using the conventional one-sided power spectra. The proposed technique is also tested to check the robustness to the sensor position and the engine rotational speed.

  • PDF

The diagnosis of Plasma Through RGB Data Using Rough Set Theory

  • Lim, Woo-Yup;Park, Soo-Kyong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.413-413
    • /
    • 2010
  • In semiconductor manufacturing field, all equipments have various sensors to diagnosis the situations of processes. For increasing the accuracy of diagnosis, hundreds of sensors are emplyed. As sensors provide millions of data, the process diagnosis from them are unrealistic. Besides, in some cases, the results from some data which have same conditions are different. We want to find some information, such as data and knowledge, from the data. Nowadays, fault detection and classification (FDC) has been concerned to increasing the yield. Certain faults and no-faults can be classified by various FDC tools. The uncertainty in semiconductor manufacturing, no-faulty in faulty and faulty in no-faulty, has been caused the productivity to decreased. From the uncertainty, the rough set theory is a viable approach for extraction of meaningful knowledge and making predictions. Reduction of data sets, finding hidden data patterns, and generation of decision rules contrasts other approaches such as regression analysis and neural networks. In this research, a RGB sensor was used for diagnosis plasma instead of optical emission spectroscopy (OES). RGB data has just three variables (red, green and blue), while OES data has thousands of variables. RGB data, however, is difficult to analyze by human's eyes. Same outputs in a variable show different outcomes. In other words, RGB data includes the uncertainty. In this research, by rough set theory, decision rules were generated. In decision rules, we could find the hidden data patterns from the uncertainty. RGB sensor can diagnosis the change of plasma condition as over 90% accuracy by the rough set theory. Although we only present a preliminary research result, in this paper, we will continuously develop uncertainty problem solving data mining algorithm for the application of semiconductor process diagnosis.

  • PDF

Design of Self-Validation Sensor Using Noise (노이즈를 이용한 자기진단센서 설계)

  • 김이곤;하종필
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.153-157
    • /
    • 2002
  • 자기 진단 센서는 자신의 상태를 스스로 진단하는 기능을 갖는 센서를 말한다. 이러한 기능을 갖기 위해서 자신의 상태를 판단 할 수 있는 정보를 얻는 것이 가장 중요하다. 본 연구에서는 자신의 노이즈 신호만으로 상태를 판단할 수 있는 자기 진단센서의 설계하는 방법을 제안하였다. 웨이브렛 및 ICA 분석기법을 이용하여 자신의 출력 신호로부터 대상목표의 측정물리량을 나타내는 신호성분을 제외한, 센서 자신으로부터 발생하는 특징 노이즈 신호만을 분류한 다음에, 이 신호를 PDS로 정량화하여 특징 데이터를 생성하였다. 실험을 통해 그 타당성을 입증하였다.

  • PDF

Fault Diagnosis and Tolerant Control of DC-Link Voltage Sensor in Three-Phase AC/DC PWM Converters (3상 AC/DC PWM 컨버터의 직류링크 전압센서 고장 진단 및 허용 제어)

  • Kim, Soo-Cheol;Lee, Dong-Choon;Kim, Jang-Mok;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.470-471
    • /
    • 2012
  • 본 논문은 루엔버거 관측기를 이용하여 직류링크 전압을 추정하고 추정치와 측정치를 비교하여 전압센서의 고장을 진단하는 방법을 제안한다. 또한 전압센서 고장 시에 추정치를 이용하여 제어함으로써 전압센서 고장 허용제어가 가능함을 보인다. 제안된 알고리즘은 시뮬레이션을 통해 그 타당성이 검증된다.

  • PDF

MUSIC-based Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors Using Flux Signal

  • Youn, Young-Woo;Yi, Sang-Hwa;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.288-294
    • /
    • 2013
  • The diagnosis of motor failures using an on-line method has been the aim of many researchers and studies. Several spectral analysis techniques have been developed and are used to facilitate on-line diagnosis methods in industry. This paper discusses the first application of a motor flux spectral analysis to the identification of broken rotor bar (BRB) faults in induction motors using a multiple signal classification (MUSIC) technique as an on-line diagnosis method. The proposed method measures the leakage flux in the radial direction using a radial flux sensor which is designed as a search coil and is installed between stator slots. The MUSIC technique, which requires fewer number of data samples and has a higher detection accuracy than the traditional fast Fourier transform (FFT) method, then calculates the motor load condition and extracts any abnormal signals related to motor failures in order to identify BRB faults. Experimental results clearly demonstrate that the proposed method is a promising candidate for an on-line diagnosis method to detect motor failures.

Development of a Fault Detection Algorithm for Multi-Autonomous Driving Perception Sensors Based on FIR Filters (FIR 필터 기반 다중 자율주행 인지 센서 결함 감지 알고리즘 개발)

  • Jae-lee Kim;Man-bok Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.175-189
    • /
    • 2023
  • Fault detection and diagnosis (FDI) algorithms are actively being researched for ensuring the integrity and reliability of environment perception sensors in autonomous vehicles. In this paper, a fault detection algorithm based on a multi-sensor perception system composed of radar, camera, and lidar is proposed to guarantee the safety of an autonomous vehicle's perception system. The algorithm utilizes reference generation filters and residual generation filters based on finite impulse response (FIR) filter estimates. By analyzing the residuals generated from the filtered sensor observations and the estimated state errors of individual objects, the algorithm detects faults in the environment perception sensors. The proposed algorithm was evaluated by comparing its performance with a Kalman filter-based algorithm through numerical simulations in a virtual environment. This research could help to ensure the safety and reliability of autonomous vehicles and to enhance the integrity of their environment perception sensors.

Fault Diagnosis of Drone Using Machine Learning (머신러닝을 이용한 드론의 고장진단에 관한 연구)

  • Park, Soo-Hyun;Do, Jae-Seok;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.28-34
    • /
    • 2021
  • The Fourth Industrial Revolution has led to the development of drones for commercial and private applications. Therefore, the malfunction of drones has become a prominent problem. Failure mode and effect analysis was used in this study to analyze the primary cause of drone failure, and blade breakage was observed to have the highest frequency of failure. This was tested using a vibration sensor placed on drones along the breakage length of the blades. The data exhibited a significant increase in vibration within the drone body for blade fracture length. Principal component analysis was used to reduce the data dimension and classify the state with machine learning algorithms such as support vector machine, k-nearest neighbor, Gaussian naive Bayes, and random forest. The performance of machine learning was higher than 0.95 for the four algorithms in terms of accuracy, precision, recall, and f1-score. A follow-up study on failure prediction will be conducted based on the results of fault diagnosis.