• Title/Summary/Keyword: Sensor fault diagnosis

Search Result 153, Processing Time 0.025 seconds

Influence Analysis of Actual Fault Cases in Unmanned Vehicle Industry and Study on Fault Tolerant Technology (무인이동체 산업의 실제 고장사례에 대한 영향성 분석 및 고장대응기술 적용방안)

  • Kim, Yeji;Kim, Taegyun;Kim, Seungkeun;Kim, Youdan;Hwang, Inseong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.627-638
    • /
    • 2022
  • This paper discusses the utilization of fault-tolerant technology in the industry by analyzing the status of drone failures in the unmanned vehicle industry survey conducted in 2020. Based on the survey results of the domestic unmanned vehicle industry, we identify subsystems with high fault rates and high severity when faults occur. In addition, fault simulations of the identified subsystems are conducted to analyze the effect of the fault on the vehicles. After that, the fault diagnosis and fault compensation methods studied so far are reviewed, and research cases of the methods are examined. Moreover, the ways to apply it to actual fault cases in the unmanned vehicle industry are debated. Furthermore, based on the previous discussion, the fault-tolerant system is presented, and the consideration when designing the fault-tolerant system in the industry are studied.

A Sensor Value Validation Technique for Supporting Stable Operations of Thermal Power Plants (화력발전소의 안정운전 지원을 위한 계측값 검증 기법에 관한 연구)

  • Lee, Seung-Chul;Kim, Seung-Jin;Han, Seung-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.201-209
    • /
    • 2009
  • In power plant operations, sensor values often exhibit erroneous values due to their failures or the intrusions of various noises. However, most of the power plant monitoring and fault diagnosis systems perform their tasks based on the assumptions that the collected sensor values are correct all the times. These assumptions, which are not valid, often lead to serious consequences such as power plant trips. In this paper, we propose a power plant sensor value validation technique that can utilize the relationships existing among the sensor values as the sensor redundancy. The proposed technique is applied to the flow meters installed along boiler feed water systems of a typical tubular type boiler thermal power plant and shows a good potential of future applications.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Development of On-Line Diagnostic Expert System Algorithmic Sensor Validation (진단 전문가시스템의 개발 : 연산적 센서검증)

  • 김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.323-338
    • /
    • 1994
  • This paper outlines a framework for performing intelligent sensor validation for a diagnostic expert system while reasoning under uncertainty. The emphasis is on the algorithmic preprocess technique. A companion paper focusses on heuristic post-processing. Sensor validation plays a vital role in the ability of the overall system to correctly detemine the state of a plant monitored by imperfect sensors. Especially, several theoretical developments were made in understanding uncertain sensory data in statistical aspect. Uncertain information in sensory values is represented through probability assignments on three discrete states, "high", "normal", and "low", and additional sensor confidence measures in Algorithmic Sv.Upper and lower warning limits are generated from the historical learning sets, which represents the borderlines for heat rate degradation generated in the Algorithmic SV initiates a historic data base for better reference in future use. All the information generated in the Algorithmic SV initiate a session to differentiate the sensor fault from the process fault and to make an inference on the system performance. This framework for a diagnostic expert system with sensor validation and reasonig under uncertainty applies in HEATXPRT$^{TM}$, a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants.

An Effective Algorithm for Diagnosing Sensor Node Faults (효율적인 센서 노드 고장 진단 알고리즘)

  • Oh, Won-Geun;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.283-288
    • /
    • 2015
  • The possible erroneous output data of the sensor nodes can cause the performance limit or the degradation of the reliability in the whole wireless sensor networks(WSN). In this paper, we propose a new sensor node scheme with multiple sensors and a new fault diagnostic algorithm. The algorithm can increase the reliability of the whole WSNs by utilizing measurements of the multiple sensors on the node and by determining the validity of the date by comparing the value of each sensor. It can increase the cost and complexity of the node, but is suitable for the area where the high reliability is critical.

Fault Diagnosis of Induction Motor using analysis of Stator Current (고정자 전류 분석을 이용한 유도전동기 고장진단)

  • Shin, Jung-Ho;Kang, Dae-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • As increasing of using induction motors, the induction motors faults cause serious damage to the industry. Therefore to find out faults of induction motor is recognized as important problem awaiting solution. But to make matters worse, the faults of induction motors often progress through long time. It means that early diagnosis is very important. Many researches have been progressed and general method of diagnosis is using vibration sensor to diagnose fault of induction motor. However, although it is reliability technique, it demands high price and it is difficult to use. This paper presents an implementation of technique for fault diagnosis of induction motor using wavelet transform based stator current and it is composed with algorithm that decides whether fault existence or not using C++ based on windows software. The algorithm will be accomplished in real-time using current data acquisition board and PC automatically with Neural Network algorithm.

  • PDF

Sensor Fault Detection Scheme based on Deep Learning and Support Vector Machine (딥 러닝 및 서포트 벡터 머신기반 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.185-195
    • /
    • 2018
  • As machines have been automated in the field of industries in recent years, it is a paramount importance to manage and maintain the automation machines. When a fault occurs in sensors attached to the machine, the machine may malfunction and further, a huge damage will be caused in the process line. To prevent the situation, the fault of sensors should be monitored, diagnosed and classified in a proper way. In the paper, we propose a sensor fault detection scheme based on SVM and CNN to detect and classify typical sensor errors such as erratic, drift, hard-over, spike, and stuck faults. Time-domain statistical features are utilized for the learning and testing in the proposed scheme, and the genetic algorithm is utilized to select the subset of optimal features. To classify multiple sensor faults, a multi-layer SVM is utilized, and ensemble technique is used for CNN. As a result, the SVM that utilizes a subset of features selected by the genetic algorithm provides better performance than the SVM that utilizes all the features. However, the performance of CNN is superior to that of the SVM.

A Study on Sensor Module and Diagnosis of Automobile Wheel Bearing Failure Prediction (차량용 휠 베어링의 결함 예측을 위한 센서 모듈 및 진단 연구)

  • Hwang, Jae-Yong;Seol, Ye-In
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.47-53
    • /
    • 2020
  • There is a need for a system that provides early warning of presence and type of failure of automobile wheel bearings through the application of predictive fault analysis technologies. In this paper, we presented a sensor module mounted on a wheel bearing and a diagnostic system that collects, stores and analyzes vehicle acceleration information and vibration information from the sensor module. The developed sensor module and predictive analysis system was tested and evaluated thorough excitation test equipment and real automotive vehicle to prove the effectiveness.

A Model-Based Fault Detection and Diagnosis Methodology for Cooling Tower

  • Ahn, Byung-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.63-71
    • /
    • 2001
  • This paper presents a model-based method for detecting and diagnosing some faults in the cooling tower of healing, ventilating, and air-conditioning systems. A simple model for the cooling tower is employed. Faults in cooling tower operation are detected through the deviations in the values of system characteristic parameters such as the heat transfer coefficient-area product, the tower approach, the tower effectiveness, and fan power. Three distinct faults are considered: cooling tower inlet water temperature sensor fault, cooling tower pump fault, and cooling tower fan fault. As a result, most values of the system characteristics parameter variations due to a fault are much higher or lower than the values without faults. This allows the faults in a cooling tower to be detected easily using above methods. The diagnostic rules for the faults were also developed through investigating the changes in the different parameter due to each faults.

  • PDF