• Title/Summary/Keyword: Sensor failures

검색결과 148건 처리시간 0.028초

영상장치 센서 데이터 QC에 관한 연구 (A study on imaging device sensor data QC)

  • 윤동민;이재영;박성식;전용한
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Distributed Prevention Mechanism for Network Partitioning in Wireless Sensor Networks

  • Wang, Lili;Wu, Xiaobei
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.667-676
    • /
    • 2014
  • Connectivity is a crucial quality of service measure in wireless sensor networks. However, the network is always at risk of being split into several disconnected components owing to the sensor failures caused by various factors. To handle the connectivity problem, this paper introduces an in-advance mechanism to prevent network partitioning in the initial deployment phase. The approach is implemented in a distributed manner, and every node only needs to know local information of its 1-hop neighbors, which makes the approach scalable to large networks. The goal of the proposed mechanism is twofold. First, critical nodes are locally detected by the critical node detection (CND) algorithm based on the concept of maximal simplicial complex, and backups are arranged to tolerate their failures. Second, under a greedy rule, topological holes within the maximal simplicial complex as another potential risk to the network connectivity are patched step by step. Finally, we demonstrate the effectiveness of the proposed algorithm through simulation experiments.

무선 센서 네트워크를 위한 대규모 장애 적응적 라우팅 프로토콜 (Large Scale Failure Adaptive Routing Protocol for Wireless Sensor Networks)

  • 이좌형;선주호;정인범
    • 정보처리학회논문지A
    • /
    • 제16A권1호
    • /
    • pp.17-26
    • /
    • 2009
  • 무선센서네트워크는 위험 지역에서의 데이터 수집 용도로 최근 각광받고 있는 기술이다. 하지만 위험한 지역에서는 다수 노드들에서 동시 다발적인 장애발생 위험이 크기 때문에 대규모의 장애를 빠르게 복구시키기 위한 자가 복구 능력을 높여야 한다. 기존의 라우팅 프로토콜들은 하나의 노드에서 발생한 장애는 빠르게 복구하지만 다수의 노드들에서 장애 발생시 이에 효과적으로 대처하지 못한다. 이에 본 논문에서는 대규모 장애 발생시 이를 빠르게 복구하기 위한LSFA(Large Scale Failure Adaptive Routing Protocol)을 제안한다. LSFA는 다수의 노드들에 장애가 발생하여 데이터 전송이 이루어지지 못하는 환경에서 장애를 빠르게 감지하고 라우팅 주기를 적응적으로 조절하여 빠른 시간에 네트워크를 복구한다. LSFA는 패킷손실 정도를 장애발생 판단의 기준으로 사용하며 장애를 감지하면 라우팅 주기를 짧게 하여 장애가 발생한 사실이 네트워크에 빠르게 퍼지도록 한다. 베이스스테이션으로의 경로를 유지하고 있는 노드가 주위에 장애가 발생한 사실을 감지하면 자신의 라우팅 정보를 빠르게 전파시켜 장애 복구가 빠르게 이루어지도록 한다. 실험을 통하여 LSFA가 다른 프로토콜들에 비해 적은 패킷을 사용하면서도 장애를 빠르게 복구함을 보인다.

불확정성 선형시스템에 대한 $H_{\inf}$ 노옴 성능 경계를 만족하는 신뢰성 제어시스템의 설계 (Design of Reliable Control System Guaranteeing $H_{\inf}-norm$ Peformance Bound for Uncertain Linear System)

  • 박세화
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.1-14
    • /
    • 1996
  • Design of a reliable control systems is investigated for a class of uncertain linear plants. The uncertainty considered here is for the ase of uncertainty in the system matrix. A decentralized control scheme with two observer-based feedback controllers is developed, and it is shown that the resulting closed-loop system is reliable in the sense that the control scheme provides guaranteed stability and $H_{\infty}$-norm bounded performance in the event of sensor and/or actuator failures as well as in the presence of parameter uncertainties. We observed that soft-type failures were additional exogenous inputs to the closed-loop system. As a results, the sensor and/or actuator failures can be tolerated in the design, which is achieved by extending the methodology developed in.

  • PDF

계층적 모델을 이용한 단일 센서 노드의 가용성 분석 (Availability Analysis of Single Sensor Node using Hierarchical Model)

  • 윤영현
    • 디지털산업정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.87-93
    • /
    • 2009
  • In this paper, we propose and evaluate the availability of single sensor node using a hierarchial modeling approach. We divides a sensor node into a software and hardware and analyze failures of each component. We construct Markov chains to represent the components of a sensor node, and then we construct a hierarchical model which use fault tree in upper level and Markov chains in lower level. We evaluate the availability and down of single sensor node.

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.

Motion Sensor Fault Detection and Failsafe Logic for Vehic1e Stability Control Systems (VSCs)

  • Yi, Kyongsu;Min, Kyongchan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1961-1968
    • /
    • 2004
  • The design of a reliable and failsafe control system requires that sensor failures be detected and identified within acceptable time limit so that system malfunction can be prevented. This paper presents a model-based approach to sensor fault detection with applications to vehicle stability control systems. The effectiveness of the proposed method is illustrated through test data-based evaluation. Vehicle test data-based evaluation results show that the proposed fault management scheme can be used for the design of a failsafe VSCs.

Reliable Robust Control for Singularly Perturbed Systems by Delta Operator Approach

  • Shim, Kyu-Hong;M. Edwin Sawan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.34.5-34
    • /
    • 2001
  • This paper presents a reliable H$\infty$ controller design for singularly perturbed systems by the delta operator approach that guarantees stability with a known H$\infty$ norm bound in case of failures in some control channels. Prespecified are the control channels that may experience failures. Sensor outage is covered in this paper It is shown that the delta systems have improved finite wort length characteristics in the example.

  • PDF

지능형 ESC 시스템을 위한 모델 기반 결함검출 (Model Based Fault Detection for Advanced ESC System)

  • 김병우;허진
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2306-2313
    • /
    • 2010
  • This paper describes a model based fault detection algorithm for an Advanced ESC System which consists of Hydraulic Control Unit (HCU) with built-in wheel pressure sensors. Advanced ESC System can be used for various value-added functions such as Stop & Go Function and Regenerative Brake Function. Therefore, HCU must have a reliable fault detection. Due to the huge amount of sensor signals, existing specific sensor based fault detection of HCU cannot guarantee the safety of vehicle. However, proposed algorithm dose not require the sensors. When model based fault detection algorithm detects severe failures of the HCU, it warns the driver in advance to prevent accidents due to the failures. For this purpose, a mathematical model is developed and validated in comparison to actual data. Simulation results and data acquired from an actual system are compared with each other to obtain the information needed for the fault detection process.

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF