• Title/Summary/Keyword: Sensor electrode

Search Result 754, Processing Time 0.038 seconds

Electrode Shape Design for Multi-Mode Sensors Using Genetic Algorithm (유전 알고리즘을 이용한 다중모드 감지기를 위한 전극의 형상 설계)

  • Park, Chul-Hue;Lee, Ki-Moon;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.637-642
    • /
    • 2004
  • This paper presents a new shape design method for the multi-mode sensor that can detect selected multiple modes for the active vibration control of mechanical structures. The structure used for this study is an isotropic cantilever beam type with a PVDF(polyvinylidene fluoride) which is bonded onto the structure as a sensor. Characteristic behaviors of the sensor are related with the electrode shapes of PVDF. The shape optimization problem is solved by defining a new multi-objective function and using the genetic algorithm. Resulting electrode shape functions have good performances to detect the multiple vibration modes. The results of analytical simulations are compared with those of experiment works. The results agree well each other. Hence, the obtained experimental results give evidence for the validity of the presented theoretical analysis of the electrode shape design problem.

  • PDF

Development of a New Copper(II) Ion-selective Poly(vinyl chloride) Membrane Electrode Based on 2-Mercaptobenzoxazole

  • Akhond, Morteza;Ghaedi, Mehrorang;Tashkhourian, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.882-886
    • /
    • 2005
  • Copper(II) ion-selective PVC membrane electrode based on 2-mercaptobenzoxazole as a new ionophore and o-nitrophenyl octyl ether (o-NPOE) as plasticizer is proposed. This electrode revealed good selectivity for $Cu^{2+}$ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, and concentration of internal solution on the potential response of $Cu^{2+}$ sensor were investigated. The electrode exhibits good response for $Cu^{2+}$ in a wide linear range of 5.0 ${\times}$ 10−.6-1.6 ${\times}$ $10^{-2}$ mol/L with a slope of 29.2 ${\pm}$ 2.0 mV/decade. The response time of the sensor is less than 10 s, and the detection limit is 2.0 ${\times}$ $10^{-6}$ mol/L. The electrode response was stable in pH range of 4-6. The lifetime of the electrode was about 2 months. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, and transition metal ions.

Development of low power type sensor for the DO concentration measurement by clark electrode (Clark전극에 의한 DO 농도측정을 위한 절전형 센서개발에 관한 연구)

  • 이동희
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.254-260
    • /
    • 1995
  • A method is described for the design and fabrication of the sensor interface circuits on the Clark electrodes for the dissolved oxygen(DO). The discussion includes a method for the +5 V single-supply driving for the sensor circuits, which has low power comsumption for the front-end electronics. DO probe under test is composed of the Clark electrode with silver anode, gold cathode and the electrolyte of half saturated KCI solution and the FEP teflon memtrance for the oxygen penetration. Typical polarograms for the DO probes by using this sensor circuit reveals high accuracy over 99% of the I to V conversion. Partial pressure of oxygen obtained from the polarograms are well suited to the results calculated. It is expected that the proposed sensor circuits can be utilized into the customized IC for the battery-driven small-size DO meters.

  • PDF

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.

Vibration Control of Beam using Distributed PVDF sensor and PZT actuator (분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어)

  • 박근영;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

Wire-tension Control System using Photo-interrupter Sensor and Micro-electrode Fabrication (광단속센서를 이용한 와이어장력 제어장치 및 마이크로전극 제조)

  • Kang, Myung Chang;Lee, Chang Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • Micro electrical discharge machining (EDM) as a non-contact machining process is very effective for micromachining with a thin electrode because of its low machining reaction force. The micro-electrode machining device has the advantage of maintaining high precision through the whole processes and uses a feeding wire in the thin electrode tool manufacturing process. This study describes the design and evaluation of a micro-electrode machining device using optical photo-interrupter. The electrode was fabricated by reverse electrical discharge machining. The performance of designed system was evaluated to measure tension force according to feed speed of wire. This system for micro electrode fabrication proves the feasibility in the micro-EDM process of the micro holes and parts for industrial applications.

Ion-Based Micro Vibration Sensor for Ultra-High Frequency Vibration Detection (초고주파수 진동 감지를 위한 이온 질량기반 진동센서)

  • Kim, Kwang-Ho;Seo, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.728-732
    • /
    • 2008
  • This paper presents ion-based micro vibration sensor for the ultra-high frequency vibration detection. Presented sensor uses the motion of anion and cation in an electrolyte. Electrolyte vibration sensors have the high shock survival characteristics and a simple read-out circuit because of the small mass and own charges of ions. Presented sensor measures the induced electric potential by the mechanical-electrical coupling. It consist of electrolyte chamber and detection electrode. Electrolyte chamber was fabricated by PDMS molding. Detection electrode was made of gold evaporation on pyrex glass. Size of electrolyte chamber was designed as $600{\times}600{\times}100um$. Detection electrode had 200nm-thick and 42um-gap. In the experimental study, 5.8M sodium Chloride (NaCl) solution was used as electrolyte in 36nl-chamber. Mechanical vibration was measured from 2kHz to 4MHz.

Highly Selective Liquid Membrane Sensor Based on 1,3,5-Triphenylpyrylium Perchlorate for Quick Monitoring of Sulfate Ions

  • Ganjali, Mohammad Reza;Ghorbani, Maryam;Daftari, Azadeh;Norouzi, Parviz;Pirelahi, Hooshang;Dargahani, Hossein Daryanavard
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.172-176
    • /
    • 2004
  • A highly selective membrane electrode based on1,3,5-triphenylpyrylium perchlorate (TPPP) is presented. The proposed electrode shows very good selectivity for sulfate ions over a wide variety of common inorganic and organic anions. The sensor displays a nice Nernstian slope of -29.7 mV per decade. The working concentration ranges of the electrode is 1.0{\times}10^{-1}-6.3{\times}10^{-6} $M with a detection limit of $4.0{\times}10^{-6}$ M (480 ng per mL). The response time of the sensor in whole concentration ranges is very short (< 6 s). The response of the sensor is independent on the pH range of 2.5-9.5. The best performance was obtained with a membrane composition of 32% PVC, 59% benzyl acetate, 5% TPPP and 4% hexadecyltrimethylammonium bromide. It was successfully used as an indicator electrode for titration of sulfate ions with barium ions. The electrode was also applied for determination of salbutamol sulfate and paramomycine sulfate.