• Title/Summary/Keyword: Sensor and instruments

Search Result 143, Processing Time 0.028 seconds

Evaluation of Ergonomic Performance of Medical Smart Insoles

  • Yi, Jae-Hoon;Lee, Jin-Wook;Seo, Dong-Kwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 2022
  • Objective: This study was to resolve the limitations of the experimental environment and to solve the shortcomings of the method of measuring human gait characteristics using optical measuring instruments. Design: A cross-sectional study. Methods: Fifteen healthy adults without a history of orthopedic surgery on the lower extremities for the past 6 months were participated. They were analyzed gait variables using the smart guide and the 3D image analysis at the same time, and their results were compared. Visual-3D was used to calculate the analysis variables. Results: The reliability and validity of the data according to the two measuring instruments were found to be very high; gait speed(0.85), cycle time(0.99), stride time of both feet(0.98, 0.97) stride legnth of both feet(0.86, 0.88) stride per minute of both feet(0.99, 0.96), foot speed of both feet(0.90, 0.91), step time of both feet(0.77, 0.71), step per minute(0.72, 0.74), stance time of both feet(0.96, 0.97), swing time of both feet(0.93, 0.79), double step time(0.81), initial double step time(0.84) and terminal step time(0.76). Conclusions: In the case of the smart insole, which measures human gait variables using the pressure sensor and inertial sensor inserted in the insole, the reliability and validity of the measured data were found to be very high. It can be used as a device to replace 3D image analysis when measuring pathological gait.

Development and Evaluation of 3-terminal Type Capacitive Sensor for the Diagnosis of Electrical Insulating Oil (전기 절연유 열화진단을 위한 3-단자식 전기용량 센서 개발 및 진단특성 평가)

  • Kim, Ju-Han;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.476-482
    • /
    • 2009
  • This paper describes the development of capacitive sensor for the diagnosis of liquid dielectrics, which is widely used as the electrical insulating oil of transformer, circuit breaker, cable and etc. To survey the dielectric properties of the virgin and aged electrical insulating oils, we utilized the highly precise measuring system, using the principle of cross capacitance. The measured properties were used to determine the design factors of the sensor. Then the factors were optimized with the help of computational analysis. To evaluate diagnosis by the sensor, we performed accelerated thermal aging test about electrical insulating oils. The condition of aged specimens were investigated by measurements of relative permittivity i.e. capacitance change by capacitive sensor. And to evaluate the hysteresis characteristics with the change of temperature, we constructed a testing system, which was composed with vacuum drying oven, oil chamber and measuring instruments, such as LCR meter, MUX and so forth. Through the results of this investigation, we confirmed the superior characteristics of the newly developed sensor.

A Solar Cell Based Coarse Sun Sensor for a Small LEO Satellite Attitude Determination

  • Zahran, Mohamed;Aly, Mohamed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.631-642
    • /
    • 2009
  • The sun is a useful reference direction because of its brightness relative to other astronomical objects and its relatively small apparent radius as viewed by spacecrafts near the Earth. Most satellites use solar power as a source of energy, and so need to make sure that solar panels are oriented correctly with respect to the sun. Also, some satellites have sensitive instruments that must not be exposed to direct sunlight. For all these reasons, sun sensors are important components in spacecraft attitude determination and control systems. To minimize components and structural mass, some components have multiple purposes. The solar cells will provide power and also be used as coarse sun sensors. A coarse Sun sensor is a low-cost attitude determination sensor suitable for a wide range of space missions. The sensor measures the sun angle in two orthogonal axes. The Sun sensor measures the sun angle in both azimuth and elevation. This paper presents the development of a model to determine the attitude of a small cube-shaped satellite in space relative to the sun's direction. This sensor helps small cube-shaped Pico satellites to perform accurate attitude determination without requiring additional hardware.

JAXA'S EARTH OBSERVING PROGRAM

  • Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.7-10
    • /
    • 2006
  • Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on $24^{th}$ Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 ${\mu}m$ region with 0.2 to 0.5 $cm^{-1}$ resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  • PDF

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test (적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

A Study on the Measurement System Design for Measuring Properties of AC Magnetic Field Sensor (교류 자기센서 특성 시험장치 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2015
  • This paper describes design and construction results of the measurement system developed on the purpose of measuring properties of AC magnetic field sensors used in the weapon system. The system for measuring the properties of AC magnetic field sensors consist of 3-axis helmholtz coil, signal generator, signal amplifier, sensor data acquisition unit and AC magnetic field sensor property measurement & analysis equipment including the operating software. By using this system, we can measure various properties of AC magnetic field sensor such as sensitivity, linearity and dynamic response in the frequency from 1 Hz to 10 kHz. Finally we also verified its performance by measuring the property of a MAG 639, standard magnetic field sensor of bartington instruments, with the developed measurement system.

Development of magnetic field measurement system for AMS cyclotron

  • Ho Namgoong;Hyojeong Choi;Mitra Ghergherehchi;Donghyup Ha;Mustafa Mumyapan;Jong-Seo Chai;Jongchul Lee;Hoseung Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3114-3120
    • /
    • 2023
  • A high-accuracy magnetic field measurement device based on a cyclotron is being developed for accelerator mass spectrometry (AMS). In this study, a magnetic field measurement device consisting of a Hall probe sensor, piezo-motor, and step motor was developed to measure the magnetic field of the AMS cyclotron magnet. The Hall probe sensor was calibrated to achieve positional accuracy by using polar coordinates. The measurement results between the ratchet gear and piezo-motor, which are the instruments used for driving the measurement device, were analyzed. The measurement result of the device with a piezo-motor exhibits a difference of 5 Gauss (0.04%) as compared with the simulation result.

The Evaluation of Effectiveness on Horizontal Ambient Vibration Measurement of Tall Building Using Wireless MEMS Sensor (무선 MEMS 센서를 이용한 초고층 건물 수평 상시진동 계측의 유효성 평가)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Recently, measuring instruments for SHM of structures had being developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to its absence of triboelectric noise and elimination of the requirement for cumbersome cable. However, the research on the tall buildings with relatively small vibration levels is insufficient. Therefore, in this paper, we used the wireless MEMS sensor and iPad to compare and analyze the vibration measurements of three tall buildings and two towers.

Open-channel discharges evaluation by the application of smart sensors

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.138-138
    • /
    • 2022
  • Understanding a stream's or river's discharge is essential for a variety of hydrological and geomorphological applications at various sizes. However, depending on the stream environment and flow conditions, it is crucial to use the appropriate techniques and instruments. This will ensure that discharge estimations are as reliable as possible. This study presents developed smart system for continuous measurement of open channel discharge and evaluate streamflow measurement over various techniques. This includes developed smart flow meter as flow point measurements, smart water level sensor (installed on Hydraulic Structure ? Weir) and current meters. Advantages and disadvantages of each equipment are presented to ensure that the most appropriate method can be selected. we found that smart water level sensor is more prominent once used during flood event as compared to smart flow meter and current meters, while current meters seems to show better accuracy once applied for open channel.

  • PDF

A Study on the System Design for Measuring the Property of Broadband AC Magnetic Sensors (광대역 교류 자기센서 특성 시험장치 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.685-686
    • /
    • 2015
  • This paper describes design results of the measurement system to test the properties of broadband AC magnetic field sensors used in weapon system. This measurement system consists of 3-axis helmholtz coil, signal generator, signal amplifier, sensor data acquisition unit and measurement & analysis controller including the operating software. This system is able to measure various properties of AC magnetic field sensor such as sensitivity, linearity and dynamic response in the frequency of 1 Hz to 10 kHz. The performance of this system was verified by measuring and analyzing the property of a MAG 639, standard magnetic field sensor of bartington instruments, with this developed system.

  • PDF