• Title/Summary/Keyword: Sensor Tracking

Search Result 1,048, Processing Time 0.027 seconds

Real-time Body Surface Motion Tracking using the Couch Based Computer-controlled Motion Phantom (CBMP) and Ultrasonic Sensor: A Feasibility Study (CBMP (Couch Based Computer-Controlled Motion Phantom)와 초음파센서에 기반한 실시간 체표면 추적 시스템 개발: 타당성 연구)

  • Lee, Suk;Yang, Dae-Sik;Park, Young-Je;Shin, Dong-Ho;Huh, Hyun-Do;Lee, Sang-Hoon;Cho, Sam-Ju;Lim, Sang-Wook;Jang, Ji-Sun;Cho, Kwang-Hwan;Shin, Hun-Joo;Kim, Chul-Yong
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • Respiration sating radiotherapy technique developed In consideration of the movement of body surface and Internal organs during respiration, is categorized into the method of analyzing the respiratory volume for data processing and that of keeping track of fiducial landmark or dermatologic markers based on radiography. However, since these methods require high-priced equipments for treatment and are used for the specific radiotherapy. Therefore, we should develop new essential method whilst ruling out the possible problems. This study alms to obtain body surface motion by using the couch based computer-controlled motion phantom (CBMP) and US sensor, and to develop respiration gating techniques that can adjust patients' beds by using opposite values of the data obtained. The CBMP made to measure body surface motion is composed of a BS II microprocessor, sensor, host computer and stopping motor etc. And the program to control and operate It was developed. After the CBMP was adjusted by entering random movement data, and the phantom movements were acquired using the sensors, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using a rabbit, the real-time respiration gating techniques were drawn by operating the phantom with the opposite values of the data. The result of analysing the acquisition-correction delay time for the data value shows that the data value coincided within 1% and that the acquistition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. And the movement was the maximum movement was 6 mm In Z direction, In which the respiratory cycle was 2.9 seconds. This study successfully confirms the clinical application possibility of respiration gating techniques by using a CBWP and sensor.

  • PDF

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.

A Study on Fault Detection Monitoring and Diagnosis System of CNG Stations based on Principal Component Analysis(PCA) (주성분분석(PCA) 기법에 기반한 CNG 충전소의 이상감지 모니터링 및 진단 시스템 연구)

  • Lee, Kijun;Lee, Bong Woo;Choi, Dong-Hwang;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • In this study, we suggest a system to build the monitoring model for compressed natural gas (CNG) stations, operated in only non-stationary modes, and perform the real-time monitoring and the abnormality diagnosis using principal component analysis (PCA) that is suitable for processing large amounts of multi-dimensional data among multivariate statistical analysis methods. We build the model by the calculation of the new characteristic variables, called as the major components, finding the factors representing the trend of process operation, or a combination of variables among 7 pressure sensor data and 5 temperature sensor data collected from a CNG station at every second. The real-time monitoring is performed reflecting the data of process operation measured in real-time against the built model. As a result of conducting the test of monitoring in order to improve the accuracy of the system and verification, all data in the normal operation were distinguished as normal. The cause of abnormality could be refined, when abnormality was detected successfully, by tracking the variables out of the score plot.

Construction of Virtual Public Speaking Simulator for Treatment of Social Phobia (대인공포증의 치료를 위한 가상 연설 시뮬레이터의 실험적 제작)

  • 구정훈;장동표;신민보;조항준;안희범;조백환;김인영;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.6
    • /
    • pp.615-621
    • /
    • 2000
  • A social phobia is an anxiety disorder characterized by extreme fear and phobic avoidance of social and performance situations. Medications or cognitive-behavior methods have been mainly used in treating it. These methods have some shortcomings such as being inefficient and difficult to apply to treatment. Lately the virtual rcality technology has been applied to dcal with the anxiety disorders in order to compcnsate for these defects. A virtual environment provides a patient with stimuli which cvokes a phobia. and the patient's exposure to the virtual phobic situation make him be able to overcome it. In this study, we suggested the public speaking simulator based on a personal computer for the treatment of social phobia. The public speaking simulator was composed of a position sensor. head mount display and audio system. And a virtual environment for the treatment was suggested to be a seminar room where 8 avatars are sitting. The virtual environment includes a tracking system the trace a participant's head-movement using a HMD with position sensor and 3D sound is added to the virtual environment so that he might fcel it realistic. We also made avatars' motion and facial expression change in reaction to a participant's speech. The goal of developing public speaking simulator is to apply to treat fear of public speaking efficiently and economically. In a future study. we should get more information about immergence and treatment efficiency by clinical test and apply it to this simulator.

  • PDF

Study on Hand Gestures Recognition Algorithm of Millimeter Wave (밀리미터파의 손동작 인식 알고리즘에 관한 연구)

  • Nam, Myung Woo;Hong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.685-691
    • /
    • 2020
  • In this study, an algorithm that recognizes numbers from 0 to 9 was developed using the data obtained after tracking hand movements using the echo signal of a millimeter-wave radar sensor at 77 GHz. The echo signals obtained from the radar sensor by detecting the motion of a hand gesture revealed a cluster of irregular dots due to the difference in scattering cross-sectional area. A valid center point was obtained from them by applying a K-Means algorithm using 3D coordinate values. In addition, the obtained center points were connected to produce a numeric image. The recognition rate was compared by inputting the obtained image and an image similar to human handwriting by applying the smoothing technique to a CNN (Convolutional Neural Network) model trained with MNIST (Modified National Institute of Standards and Technology database). The experiment was conducted in two ways. First, in the recognition experiments using images with and without smoothing, average recognition rates of 77.0% and 81.0% were obtained, respectively. In the experiment of the CNN model with augmentation of learning data, a recognition rate of 97.5% and 99.0% on average was obtained in the recognition experiment using the image with and without smoothing technique, respectively. This study can be applied to various non-contact recognition technologies using radar sensors.

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

Sensor Based Path Planning and Obstacle Avoidance Using Predictive Local Target and Distributed Fuzzy Control in Unknown Environments (예측 지역 목표와 분산 퍼지 제어를 이용한 미지 환경에서의 센서 기반 경로 계획 및 장애물 회피)

  • Kwak, Hwan-Joo;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.150-158
    • /
    • 2009
  • For the autonomous movement, the optimal path planning connecting between current and target positions is essential, and the optimal path of mobile robot means obstacle-free and the shortest length path to a target position. Many actual mobile robots should move without any information of surrounded obstacles. Thus, this paper suggests new methods of path planning and obstacle avoidment, suitable in unknown environments. This method of path planning always tracks the local target expected as the optimal one, and the result of continuous tracking becomes the first generated moving path. This path, however, do not regard the collision with obstacles. Thus, this paper suggests a new method of obstacle avoidance resembled with the Potential Field method. Finally, a simulation confirms the performance and correctness of the path planning and obstacle avoidance, suggested in this paper.

  • PDF

Design of a Vision Chip for Edge Detection with an Elimination Function of Output Offset due to MOSFET Mismatch (MOSFET의 부정합에 의한 출력옵셋 제거기능을 가진 윤곽검출용 시각칩의 설계)

  • Park, Jong-Ho;Kim, Jung-Hwan;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.255-262
    • /
    • 2002
  • Human retina is able to detect the edge of an object effectively. We designed a CMOS vision chip by modeling cells of the retina as hardwares involved in edge detection. There are several fluctuation factors which affect characteristics of MOSFETs during CMOS fabrication process and this effect appears as output offset of the vision chip which is composed of pixel arrays and readout circuits. The vision chip detecting edge information from input image is used for input stage of other systems. Therefore, the output offset of a vision chip determine the efficiency of the entire performance of a system. In order to eliminate the offset at the output stage, we designed a vision chip by using CDS(Correlated Double Sampling) technique. Using standard CMOS process, it is possible to integrate with other circuits. Having reliable output characteristics, this chip can be used at the input stage for many applications, like targe tracking system, fingerprint recognition system, human-friendly robot system and etc.