• 제목/요약/키워드: Sensor Tracking

Search Result 1,048, Processing Time 0.032 seconds

A Moving Target Tracking Algorithmfor a Mobile Robot Based on a 2D Image of a Line Light (직선광선의 2D 영상을 이용한 이동로봇의 이동물체 추적 알고리즘)

  • Rim, Ho;Hahn, Hernsoo;Hong, Min-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.11-21
    • /
    • 2000
  • This paper proposes a new algorithm for a mobile robot that detects and tracks a moving target, keeping it in the view range of the robot. The sensor system consists of a camera and a line light source. The camera system is placed so that the line light projected into the ground from the light source forms its image along the horizontal center line of the CCD array of the camera. The deformation of the line image from the horizontal center line contains the information on existence of a moving object, its velocity, and position. Since the proposed algorithm reduces the region of the image to be searched, it reduces the computational complexity significantly comparing to the conventional image processing algorithms. The performance of the proposed algorithm has been tested by implementing on a mobile robot.

  • PDF

Development of application for guidance and controller unit for low cost and small UAV missile based on smartphone (스마트폰을 활용한 소형 저가 유도탄 유도조종장치용 어플리케이션 개발)

  • Noh, Junghoon;Cho, Kyongkuk;Kim, Seongjun;Kim, Wonsop;Jeong, Jinseob;Sang, Jinwoo;Park, Chung-Woon;Gong, Minsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.610-617
    • /
    • 2017
  • In the recent weapon system trend, it is required to develop small and low cost guidance missile to track and strike the enemy target effectively. Controling the such small drone typed weapon demands a integrated electronic device that equipped with not only a wireless network interface, a high resolution camera, various sensors for target tracking, and position and attitude control but also a high performance processor that integrates and processes those sensor outputs in real-time. In this paper, we propose the android smartphone as a solution for that and implement the guidance and control application of the missile. Furthermore, the performance of the implemented guidance and control application is analyzed through the simulation.

Audio-Visual Fusion for Sound Source Localization and Improved Attention (음성-영상 융합 음원 방향 추정 및 사람 찾기 기술)

  • Lee, Byoung-Gi;Choi, Jong-Suk;Yoon, Sang-Suk;Choi, Mun-Taek;Kim, Mun-Sang;Kim, Dai-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.737-743
    • /
    • 2011
  • Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection.

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

VALIDATION OF SEA ICE MOTION DERIVED FROM AMSR-E AND SSM/I DATA USING MODIS DATA

  • Yaguchi, Ryota;Cho, Ko-Hei
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.301-304
    • /
    • 2008
  • Since longer wavelength microwave radiation can penetrate clouds, satellite passive microwave sensors can observe sea ice of the entire polar region on a daily basis. Thus, it is becoming popular to derive sea ice motion vectors from a pair of satellite passive microwave sensor images observed at one or few day interval. Usually, the accuracies of derived vectors are validated by comparing with the position data of drifting buoys. However, the number of buoys for validation is always quite limited compared to a large number of vectors derived from satellite images. In this study, the sea ice motion vectors automatically derived from pairs of AMSR-E 89GHz images (IFOV = 3.5 ${\times}$ 5.9km) by an image-to-image cross correlation were validated by comparing with sea ice motion vectors manually derived from pairs of cloudless MODIS images (IFOV=250 ${\times}$ 250m). Since AMSR-E and MODIS are both on the same Aqua satellite of NASA, the observation time of both sensors are the same. The relative errors of AMSR-E vectors against MODIS vectors were calculated. The accuracy validation has been conducted for 5 scenes. If we accept relative error of less than 30% as correct vectors, 75% to 92% of AMSR-E vectors derived from one scene were correct. On the other hand, the percentage of correct sea ice vectors derived from a pair of SSM/I 85GHz images (IFOV = 15 ${\times}$ 13km) observed nearly simultaneously with one of the AMSR-E images was 46%. The difference of the accuracy between AMSR-E and SSM/I is reflecting the difference of IFOV. The accuracies of H and V polarization were different from scene to scene, which may reflect the difference of sea ice distributions and their snow cover of each scene.

  • PDF

Data analysis of 4M data in small and medium enterprises (빅데이터 도입을 위한 중소제조공정 4M 데이터 분석)

  • Kim, Jae Sung;Cho, Wan Sup
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1117-1128
    • /
    • 2015
  • In order to secure an important competitive advantage in manufacturing business, an automation and information system from manufacturing process has been introduced; however, small and medium enterprises have not met the power of information in the manufacturing fields. They have been managing the manufacturing process that is depending on the operator's experience and data written by hand, which has limits to reveal cause of defective goods clearly, in the case of happening of low-grade goods. In this study, we analyze critical factors which affect the quality of some manufacturing process in terms of 4M. We also studied the automobile parts processing of the small and medium manufacturing enterprises controlled with data written by hand so as to collect the data written by hand and to utilize sensor data in the future. Analysis results show that there is no deference in defective quantity in machines, while raw materials, production quality and task tracking have significant deference.

Systematic Error Correction of Sea Surveillance Radar using AtoN Information (항로표지 정보를 이용한 해상감시레이더의 시스템 오차 보정)

  • Kim, Byung-Doo;Kim, Do-Hyeung;Lee, Byung-Gil
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.447-452
    • /
    • 2013
  • Vessel traffic system uses multiple sea surveillance radars as a primary sensor to obtain maritime traffic information like as ship's position, speed, course. The systematic errors such as the range bias and the azimuth bias of the two-dimensional radar system can significantly degrade the accuracy of the radar image and target tracking information. Therefore, the systematic errors of the radar system should be corrected precisely in order to provide the accurate target information in the vessel traffic system. In this paper, it is proposed that the method compensates the range bias and the azimuth bias using AtoN information installed at VTS coverage. The radar measurement residual error model is derived from the standard error model of two-dimensional radar measurements and the position information of AtoN, and then the linear Kalman filter is designed for estimation of the systematic errors of the radar system. The proposed method is validated via Monte-Carlo runs. Also, the convergence characteristics of the designed filter and the accuracy of the systematic error estimates according to the number of AtoN information are analyzed.

Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots (모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어)

  • Na, Doo-Young;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.470-477
    • /
    • 2009
  • Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.

Conceptual Design of a Solid State Telescope for Small scale magNetospheric Ionospheric Plasma Experiments

  • Sohn, Jongdae;Lee, Jaejin;Jo, Gyeongbok;Lee, Jongkil;Hwang, Junga;Park, Jaeheung;Kwak, Young-Sil;Park, Won-Kee;Nam, Uk-Won;Dokgo, Kyunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • The present paper describes the design of a Solid State Telescope (SST) on board the Korea Astronomy and Space Science Institute satellite-1 (KASISat-1) consisting of four [TBD] nanosatellites. The SST will measure these radiation belt electrons from a low-Earth polar orbit satellite to study mechanisms related to the spatial resolution of electron precipitation, such as electron microbursts, and those related to the measurement of energy dispersion with a high temporal resolution in the sub-auroral regions. We performed a simulation to determine the sensor design of the SST using GEometry ANd Tracking 4 (GEANT4) simulations and the Bethe formula. The simulation was performed in the range of 100 ~ 400 keV considering that the electron, which is to be detected in the space environment. The SST is based on a silicon barrier detector and consists of two telescopes mounted on a satellite to observe the electrons moving along the geomagnetic field (pitch angle $0^{\circ}$) and the quasi-trapped electrons (pitch angle $90^{\circ}$) during observations. We determined the telescope design of the SST in view of previous measurements and the geometrical factor in the cylindrical geometry of Sullivan (1971). With a high spectral resolution of 16 channels over the 100 keV ~ 400 keV energy range, together with the pitch angle information, the designed SST will answer questions regarding the occurrence of microbursts and the interaction with energetic particles. The KASISat-1 is expected to be launched in the latter half of 2020.

Development of an AVR MCU-based Solar Tracker (AVR 마이크로 컨트롤러 기반의 태양추적 장치 개발)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Hyun, Joon-Ho;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • An embedded two-axis solar tracking system was developed by using AVR micro controller for enhancing solar energy utilization. The system consists of an Atmega128 micro controller, two step motors, two step drive modules, CdS sensors, GPS module and other accessories needed for functional stability. This system is controlled by both an astronomical method and an optical method. Initial operation is performed by the result from the astronomical method, which is followed by the fine controlled operation using the signals from Cds sensors. The GPS sensor generates UTC, longitude and latitude data where the solar tracker is installed. A database of solar altitude, azimuth, and sunrise and sunset times is provided by UART (Universal Asynchronous Receiver/Transmitter).