• Title/Summary/Keyword: Sensor Technology

Search Result 8,654, Processing Time 0.046 seconds

Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring (농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1343-1356
    • /
    • 2022
  • Clouds or shadows are the most problematic when monitoring crops using optical satellite images. To reduce this effect, a composite algorithm was used to select the maximum Normalized Difference Vegetation Index (NDVI) for a certain period. This Maximum NDVI Composite (MNC) method reduces the influence of clouds, but since only the maximum NDVI value is used for a certain period, it is difficult to show the phenomenon immediately when the NDVI decreases. As a way to maintain the spectral information of crop as much as possible while minimizing the influence of clouds, a Score-Based Composite (SBC) algorithm was proposed, which is a method of selecting the most suitable pixels by defining various environmental factors and assigning scores to them when compositing. In this study, the Sentinel-2A/B Level 2A reflectance image and cloud, shadow, Aerosol Optical Thickness(AOT), obtainging date, sensor zenith angle provided as additional information were used for the SBC algorithm. As a result of applying the SBC algorithm with a 15-day and a monthly period for Dangjin rice fields and Taebaek highland cabbage fields in 2021, the 15-day period composited data showed faster detailed changes in NDVI than the monthly composited results, except for the rainy season affected by clouds. In certain images, a spatially heterogeneous part is seen due to partial date-by-date differences in the composited NDVI image, which is considered to be due to the inaccuracy of the cloud and shadow information used. In the future, we plan to improve the accuracy of input information and perform quantitative comparison with MNC-based composite algorithm.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1266-1271
    • /
    • 2022
  • Cats have strong wildness so they have a characteristic of hiding diseases well. The disease may have already worsened when the guardian finds out that the cat has a disease. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia, polyuria, and frequent urination more quickly. In this paper, 1) Efficient version of DeepLabCut for pose estimation, 2) YOLO v4 for object detection, 3) LSTM is used for behavior prediction, and 4) BoT-SORT is used for object tracking running on an artificial intelligence device. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the server system.

A Research of Factors Affecting LiDAR's Detection on Road Signs: Focus on Shape and Height of Road Sign (도로표지에 대한 LiDAR 검지영향요인 연구: 도로표지의 모양과 높이를 중심으로)

  • Kim, Ji yoon;Park, Bum jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.190-211
    • /
    • 2022
  • This study investigated the effect of the shape and height of road signs on detection performance when detecting road signs with LiDAR, which is recognized as an essential sensor for autonomous vehicles. For the study, four types of road signs with the same area and material and different shapes were produced, and a road driving test was performed by installing a 32Ch rotating LiDAR on the upper part of the vehicle. As a result of comparing the shape of the point cloud and the NPC according to the shape of the road sign, It is expected that a distance of less than 40m is required to recognize the overall shape of a road sign using 32Ch LiDAR, and shapes such as triangles and rectangles are more advantageous than squares in securing the maximum point cloud from a long distance. As a result of the study according to the height of the road sign, At short distances (within 20m), if the height of the sign is raised to more than 2m, it deviates from the vertical viewing angle of the LiDAR and cannot express the complete point cloud shape. However, it showed a negligible effect compared to the near-field height change. These research results are expected to be utilized in the development of road facilities dedicated to LiDAR for the commercialization of autonomous cooperative driving technology.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

A Design of Ultra-low Noise LDO Regulator for Low Voltage MEMS Microphones (저전압 MEMS 마이크로폰용 초저잡음 LDO 레귤레이터 설계)

  • Moon, Jong-il;Nam, Chul;Yoo, Sang-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.630-633
    • /
    • 2021
  • Microphones can convert received voice signals to electric signals. They have been widely used in various industries such as radios, smart devices and vehicles. Recently, the demands for small size and high sensitive microphones are increased according to the minimization of wireless earphone with the development of smart phone. A MEMS system is a good candidate for an ultra-small size microphone of a next generation and a read out IC for high sensitive MEMS sensor is researched from many industries and academies. Since the microphone system has a high sensitivity from environment noise and electric system noise, the system requires a low noise power supply and some low noise design techniques. In this paper, a low noise LDO is presented for small size MEMS microphone systems. The input supply voltage of the LDO is 1.5-3.6V, and the output voltage is 1.3V. Then, it can support to 5mA in the light load condition. The integrated output noise of proposed LDO form 20Hz to 20kHz is about 1.9uV. These post layout simulation results are performed with TSMC 0.18um CMOS technology and the size of layout is 325㎛ × 165㎛.

  • PDF

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

A Study on the Development of an Indoor Positioning Support System for Providing Landmark Information (랜드마크 정보 제공을 위한 실내위치측위 지원 시스템 구축에 관한 연구)

  • Ock-Woo NAM;Chang-Soo SHIN;Yun-Soo CHOI
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.130-144
    • /
    • 2023
  • Recently, various positioning technologies are being researched based on signal-based positioning and image-based positioning to obtain accurate indoor location information. Among these, various studies are being conducted on image positioning technology that determines the location of a mobile terminal using images acquired through cameras and sensor data collected as needed. For video-based positioning, a method of determining indoor location is used by matching mobile terminal photos with virtual landmark images, and for this purpose, it is necessary to build indoor spatial information about various landmarks such as billboards, vending machines, and ATM machines. In order to construct indoor spatial information on various landmarks, a panoramic image in the form of a road view and accurate 3D survey results were obtained through c 13 buildings of the Electronics and Telecommunications Research Institute(ETRI). When comparing the 3D total station final result and the terrestrial lidar panoramic image coordinates, the coordinates and distance performance were obtained within about 0.10m, confirming that accurate landmark construction for use in indoor positioning was possible. By utilizing these terrestrial lidar achievements to perform 3D landmark modeling necessary for image positioning, it was possible to more quickly model landmark information that could not be constructed only through 3D modeling using existing as-built drawings.

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

Study of Confidence Ranges for Field Phase Difference Measurement Data Collected using Geophones (지오폰을 활용한 현장 위상각차 계측 데이터 신뢰 구간에 관한 기초 연구)

  • Kim, Gunwoong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.41-54
    • /
    • 2024
  • Regular monitoring plays a crucial role in ensuring the safety of geotechnical structures. Currently, nondestructive methods are employed to monitor such structures to minimize the impact, e.g., sensor-based accelerometers, displacement meters, image-based lasers, and drone imaging. These technologies can observe surface changes; however, they frequently suffer difficulties in terms of identifying changes in internal properties. To monitor changes in internal properties, in situ geotechnical investigations can be employed. A nondestructive test that can be used for this purpose is the spectral analysis of surface wave (SASW) test using geophones. The SASW test is a nondestructive method; however, due to the time required for data interpretation and the difficulty in analyzing the data, it is challenging to use the SASW test for monitoring applications that require frequent observations. However, it is possible to apply the first-step analysis, which yields the dispersion curve, for monitoring rather than the complete SASW analysis, which yields the shear wave velocity. Thus, this paper presents a fundamental study on the phase difference that derives the dispersion curve to utilize the SASW test for monitoring. The reliability of each phase difference interval is examined to determine the boundary to the subjected monitor. The study used phase difference data obtained using a geophone from a single-layered, homogeneous ground site to evaluate reliable boundaries. The findings of this study are expected to improve the utility of monitoring by identifying the ideal boundary for phase difference data.