• Title/Summary/Keyword: Sensor Tag

Search Result 204, Processing Time 0.036 seconds

READABILITY TEST OF RFID TEMPERATURE SENSOR EMBEDDED IN FRESH CONCRETE

  • Julian Kang;Jasdeep Gandhi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.754-757
    • /
    • 2009
  • The current concrete maturity method implemented with temperature sensors requires an extensive wiring, which is not often acceptable on construction site due to harsh working environment. Radio Frequency Identification (RFID) technology appears to provide a solution for the wiring issue because of its ability of sending data wirelessly. An RFID tag integrated with a temperature sensor and placed within fresh concrete may be able to read temperatures of concrete and transmit them to an RFID reader wirelessly in real-time. However the previous research illustrated that the RFID signal gets dispersed in liquid medium. One may speculate then whether RFID signals travel through fresh concrete with high water content. Would the tag's burying depth within fresh concrete affect its readability? The paper presents the preliminary results of our on-going investigation on the readability of RFID tags in concrete against water content and burying depth of tags.

  • PDF

Monte Carlo Localization for Mobile Robots Under REID Tag Infrastructures (RFID 태그에 기반한 이동 로봇의 몬테카를로 위치추정)

  • Seo Dae-Sung;Lee Ho-Gil;Kim Hong-Suck;Yang Gwang-Woong;Won Dae-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • Localization is a essential technology for mobile robot to work well. Until now expensive sensors such as laser sensors have been used for mobile robot localization. We suggest RFID tag based localization system. RFID tag devices, antennas and tags are cheap and will be cheaper in the future. The RFID tag system is one of the most important elements in the ubiquitous system and RFID tag will be attached to all sorts of goods. Then, we can use this tags for mobile robot localization without additional costs. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying mobile robot's location and pose in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. When a mobile robot localizes in this smart floor, the localization error mainly results from the sensing range of the RFID reader, because the reader just ran know whether a tag is in the sensing range of the sensor. So, in this paper, we suggest two algorithms to reduce this error. We apply the particle filter based Monte Carlo localization algorithm to reduce the localization error. And with simulations and experiments, we show the possibility of our particle filter based Monte Carlo localization in the RFID tag based localization system.

A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor (스마트센서를 활용한 근골격계 질환 위험 평가 플랫폼)

  • Loh, Byoung Gook
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.

Mobile robot obstacle avoidance system using RFID tags built-in ultrasonic sensors (초음파 센서가 내장된 RFID 태그를 이용한 이동로봇 장애물 회피 시스템)

  • Lee, Chang-Won;Lee, Seung-Joon;Lim, Sam;Kim, Joo-Woong;Choi, Woo-Seung;Jung, Sung-Boo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.541-544
    • /
    • 2012
  • Recently, RFID-based mobile robot navigation technology for the study is on the march. Obstacle avoidance using existing RFID tag technology, the target is immediately recognizable through Stored in the tag for obstacle size and shape information. However, this technique is not easy to recognize a moving obstacle. In this paper, in order to this solve problem, mobile robot obstacle avoidance system is proposed using smart RFID tags attached to the ultrasonic sensor. Proposed system used Smart RFID tag is designed to the 900Mhz tags attached ultrasonic sensors. And captured moving obstacles information deliver mobile robot. Mobile robot modify driving information through delivery information. And the system keeps track of the best driving route. Usefulness of the proposed system was confirmed by simulations and experiments.

  • PDF

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

Preparation and Electrochemical Performance of 1.5 V and 3.0 V-Class Primary Film Batteries for Radio Frequency Identification (RFID)

  • Lee, Young-Gi;Choi, Min-Gyu;Kang, Kun-Young;Kim, Kwang-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • 1.5 V and 3.0 V-class film-type primary batteries were designed for radio frequency identification (RFID) tag. Efficient fabrication processes such as screen-printings of conducting layer ($25{\mu}m$), active material layer ($40{\mu}m$ for anode and $80{\mu}m$ for cathode), and electrolyte/separator/electrolyte layer ($100{\mu}m$), were adopted to give better performances of the 1.5 V-class film-type Leclanch$\acute{e}$ primary battery for battery-assisted passive (BAP) RFID tag. Lithium (Li) metal is used as an anode material in a 3.0 V-class film-type $MnO_2||$Li primary battery to increase the operating voltage and discharge capacity for application to active sensor tags of a radio frequency identification system. The fabricated 3.0 V-class film-type Li primary battery passes several safety tests and achieves a discharge capacity of more than 9 mAh $cm^{-2}$.

Status of ICT Convergence Smart Quality Distribution Technology for Food Quality and Safety Management

  • Kim, Jong Hoon;Kim, Ji Young;Kim, Byeong Sam
    • Agribusiness and Information Management
    • /
    • v.6 no.2
    • /
    • pp.13-23
    • /
    • 2014
  • The world is in the process of a structural change related to ICT convergence knowledge industries. ICT is leading to the creation of new products and services, and is making our lives more convenient, safer, and more efficient. In advanced countries, many studies have been conducted with the goal of developing new business models converged with ICT, and this is also the case in the food industry. Korea possesses world-leading ICT, and if this ICT is applied to the food industry, a world-class new business model can be developed. The u-Food System, which is in the process of development in Korea, is a next-generation food system that can allow food providers, consumers, and distributors to access various types of information about food products, including traceability, distribution, safety, quality, and freshness, and manage this information. It is a future food system that converges ICT, biotechnology and sensing technology with food. Based on the u-Food System, this paper will introduce the status of current smart quality distribution technologies that converge ICT (such as sensor tag, sensor network, LBS, GIS, and CDMA) with food technologies (such as traceability, quality, distribution management) to manage the safety and quality of fresh food in the distribution process.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

Improvements of the Anti-collision Algorithms for Multi Tag Interrogation in RFID System (RFID 시스템에서 다중 태그 인식을 위한 충돌회피 알고리즘의 성능 개선에 관한 연구)

  • NamGung, Ho-Young;Min, Byoung-Taek;Jeon, Jun-Soo;Kim, Cheol-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1169-1172
    • /
    • 2005
  • In this paper, we propose an improved anti-collision algorithm for multi tag interrogation in ubiquitous sensor network(USN) and show the result of simulation for multi tag interrogation in RFID systems. We have analyzed an EPC(Electronic Product Code) protocol which specifies the physical and logical requirements for a passive-backscatter Reader-Talk-First(RTF) RFID(Radio Frequency Identification) system operating in the $860MHz{\sim}960MHz$ frequency range. We have also designed and implemented the simulator of the RFID system based on the EPC protocol. Finally, we find that proposed algorithm works better than an existing algorithm.

  • PDF

Implementation of RFID Baseband system for Sensor Network (센서네트워크용 RFID Baseband 시스템 구현)

  • Lee, Doo Sung;Kim, Sun Hyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.9-19
    • /
    • 2008
  • In this paper, it is studied anti-collision algorithm based on the transmission protocol for RFID baseband system of the lSO/IEC 18000-6 Type-C regulation and designed the baseband part of RFID reader system using FPGA. To compensate this weak point of the slot random aloha algorithm which must have a long time to be dumped before deciding an appropriate slot size according to the number of surrounding tag, we suggested how to apply Bit By Bit algorithm to be able to recognize the tag when the tag is clashing. The design of the baseband part in the RFID reader system is accomplish by use of the ISE9.1i and I made an experiment on it targeting Spartan2. Construction verification is measured each block through Logic Analyzer and I can verify it has no error. I also compared and analyzed the performance between proposed algorithm and past algorithm and verified the improvement of performance.