• Title/Summary/Keyword: Sensor Precision

Search Result 1,643, Processing Time 0.031 seconds

Applications of Self-assembled Monolayer Technologies in MEMS Fabrication (MEMS 공정에서의 자기 조립 단분자층 기술 응용)

  • Woo-Jin Lee;Seung-Min Lee;Seung-Kyun Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • The process of microelectromechanical system (MEMS) fabrication involves surface treatment to impart functionality to the device. Such surface treatment method is the self-assembled monolayer (SAM) technique, which modifies and functionalizes the surface of MEMS components with organic molecule monolayer, possessing a precisely controllable strength that depends on immersion time and solution concentration. These monolayers spontaneously adsorb on polymeric substrates or metal/ceramic components offering high precision at the nanoscale and modifying surface properties. SAM technology has been utilized in various fields, such as tribological property control, mass-production lithography, and ultrasensitive organic/biomolecular sensor applications. This paper provides an overview of the development and application of SAM technology in various fields.

A Study on Trainer and Cover Recognition Algorithm for Posture Recognition of Virtual Shooting Trainer (가상 사격 훈련자 자세인식을 위한 훈련자와 엄폐물 인식 알고리즘 연구)

  • Kim, Hyung-O;Hong, ChangHo;Cho, Sung Ho;Park, Youster
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.298-300
    • /
    • 2021
  • The Ministry of National Defense decided to build a realistic combat simulation training system based on virtual reality and augmented reality in accordance with the expansion of the scientific training system of "Defense Reform 2.0". The realistic combat simulation training system should be able to maximize the tension and training effect as in actual combat through engagement between trainers. In addition, it should be possible to increase the effectiveness of survival training at the same time as shooting training similar to actual combat through cover training. Previous studies are suitable techniques to improve the shooting precision of the trainee, but it is difficult to practice bilateral engagement like in actual combat, and it is particularly insufficient for combat shooting training using cover. Therefore, in this paper, we propose a S/W algorithm for generating a virtual avatar by recognizing the shooting posture of the opponent on the screen of the virtual shooting trainer. This S/W algorithm can recognize the trainer and the cover based on the depth information acquired through the depth sensor and estimate the trainer's posture.

  • PDF

Counting People Walking Through Doorway using Easy-to-Install IR Infrared Sensors (설치가 간편한 IR 적외선 센서를 활용한 출입문 유동인구 계측 방법)

  • Oppokhonov, Shokirkhon;Lee, Jae-Hyun;Jung, Jae-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.35-40
    • /
    • 2021
  • People counting data is crucial for most business owners, since they can derive meaningful information about customers movement within their businesses. For example, owners of the supermarkets can increase or decrease the number of checkouts counters depending on number of occupants. Also, it has many applications in smart buildings, too. Where it can be used as a smart controller to control heating and cooling systems depending on a number of occupants in each room. There are advanced technologies like camera-based people counting system, which can give more accurate counting result. But they are expensive, hard to deploy and privacy invasive. In this paper, we propose a method and a hardware sensor for counting people passing through a passage or an entrance using IR Infrared sensors. Proposed sensor operates at low voltage, so low power consumption ensure long duration on batteries. Moreover, we propose a new method that distinguishes human body and other objects. Proposed method is inexpensive, easy to install and most importantly, it is real-time. The evaluation of our proposed method showed that when counting people passing one by one without overlapping, recall was 96% and when people carrying handbag like objects, the precision was 88%. Our proposed method outperforms IR Infrared based people counting systems in term of counting accuracy.

  • PDF

Multi-block PCA for Sensor Fault Detection and Diagnosis of City Gas Network (도시가스 배관망의 고장 탐지 및 진단을 위한 다중블록 PCA 적용 연구)

  • Yeon-ju Baek;Tae-Ryong Lee;Jong-Seun Kim;Hong-Cheol Ko
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.38-46
    • /
    • 2024
  • The city gas pipeline network is characterized by being widely distributed and hierarchically connected in a complex manner over a wide area. In order to monitor the status of the widely distributed network pressures with high precision, Multi-block PCA(MBPCA) is recommended. However, while MBPCA has excellent performance in identifying faulty sensors as the number of sensors increases, the fault detection performance deteriorates, and also there is a problem that the model needs to be updated entirely even if minor changes occur. In this study, we developed fault detectability index and fault identificability index to determine the effectiveness of MBPCA application block by block. Based on these indices, we distinguished MBPCA and PCA blocks and developed a fault detection and diagnostic system for the city gas pipeline network of Haean Energy Co., Ltd., and were able to solve the problems that arise when there are many sensors.

Precise Positioning of Farm Vehicle Using Plural GPS Receivers - Error Estimation Simulation and Positioning Fixed Point - (다중 GPS 수신기에 의한 농업용 차량의 정밀 위치 계측(I) - 오차추정 시뮬레이션 및 고정위치계측 -)

  • Kim, Sang-Cheol;Cho, Sung-In;Lee, Seung-Gi;Lee, W.Y.;Hong, Young-Gi;Kim, Gook-Hwan;Cho, Hee-Je;Gang, Ghi-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.116-121
    • /
    • 2011
  • This study was conducted to develop a robust navigator which could be in positioning for precision farming through developing a plural GPS receiver with 4 sets of GPS antenna. In order to improve positioning accuracy by integrating GPS signals received simultaneously, the algorithm for processing plural GPS signal effectively was designed. Performance of the algorithm was tested using a simulation program and a fixed point on WGS 84 coordinates. Results of this study are aummarized as followings. 1. 4 sets of lower grade GPS receiver and signals were integrated by kalman filter algorithm and geometric algorithm to increase positioning accuracy of the data. 2. Prototype was composed of 4 sets of GPS receiver and INS components. All Star which manufactured by CMC, gyro compass made by KVH, ground speed sensor and integration S/W based on RTOS(Real Time Operating System)were used. 3. Integration algorithm was simulated by developed program which could generate random position error less then 10 m and tested with the prototype at a fixed position. 4. When navigation data was integrated by geometrical correction and kalman filter algorithm, estimated positioning erros were less then 0.6 m and 1.0 m respectively in simulation and fixed position tests.

Effects of Abdominal Muscle and Pressure on the Spine Stability during Upright Stance Posture - For the Case where Intervertebral Disc Plays the Role of Mechanoreceptor (추간판이 물리적 자극의 수용기 역할을 하는 경우 기립 상태에서 복압 및 복근의 역할이 척추 안전성에 미치는 영향)

  • Choi, Hae-Won;Kim, Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.115-122
    • /
    • 2011
  • Recently, we have proposed a hypothesis that spinal structures have a stress sensor driving feedback mechanism, In the human spine, spinal structure could react to modify muscular action in such a way so as to equalize stress at the disc, therefore reduce the risk of injury, In this analysis, abdominal muscle and abdominal pressure, which were not included in the previous study, were added to identify those effects in spine stability during upright stance posture for the case where the intervertebral disc plays the role of mechanoreceptor, The musculoskeletal FE model was consisted with detailed whole lumbar spine, pelvis, sacrum, coccyx and simplified trunk model. Muscle architecture with 46 local muscles containing paraspinal muscle and 6 rectus abdominal muscles were assigned according to the acting directions. The magnitude of 4kPa was considered for abdominal pressure. Minimization of the nucleus pressure deviation and annulus fiber average tension stress deviation was chosen for cost function. Developed model provide nice coincidence with in-vivo measurement (nucleus pressure). Analysis was conducted according to existence of co-activation of abdominal muscle and abdominal pressure. Antagonistic activity of abdominal muscle produced stability of spinal column with relatively small amount of total muscle force. In contrast to the abdominal muscle, effect of abdominal pressure was not clear that was partly depending on the assumption of constant abdominal pressure.

Measurement of Geometric Errors in a Miniaturized Machine Tool Using Capacitance Sensors (정전용량센서를 이용한 소형공작기계의 기하학적 오차측정)

  • Kweon S.H.;Lee J.H.;Liu Y.;Lim C.B.;Yang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1733-1736
    • /
    • 2005
  • Many studies have been carried out to produce 3D features in the size range between $10{\mu}m\~10,000{\mu}m$, called Meso-scale. If these miniaturized systems have high relative accuracy and good volumetric utilization, it is possible to manufacture more complex and accurate shapes with various materials as well as there are advantages of reducing energy, space and resources. Due to imperfect components and misalignment in assembly, it is necessary to assess the accuracy of the miniaturized system itself to obtain high relative accuracy. Laser interferometers are widely used to measure geometric errors called as quasi-static errors. For miniaturized system, however, it is difficult to install the required accessories such as optics and the measuring range is limited because of the size of the system and also this method is very expensive. Moreover, it is impossible to measure each error component simultaneously. A new system to measure simultaneously multiple geometric errors is proposed using capacitance sensors. Each error was measured using capacitance sensors and a measurement algorithm was mathematically derived. The experiments show that the proposed measurement system can be used effectively to assess the accuracy of miniaturized system at a low cost.

  • PDF

Penetration Characteristic of CFRP laminate shell by the curvature -A focus of fracture mode by the penetration- (곡률을 고려한 CFRP 복합재 적층쉘의 관통특성 -관통에 의한 파괴모드를 중심으로-)

  • 조영재;김영남;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1434-1439
    • /
    • 2004
  • CFRP composite materials have wide application in structure materials of airplane, ships, and aero space vehicles because of their high strength and stiffness. This paper is to study the effects of curvature and orientation angle on the penetration characteristics of CFRP laminate shell. They are staked with 8 Ply specimens [0$_2$/90$_2$]$_{s}$, [0/90$_2$/0]$_{s}$ and the stacked of outer plates degree with 12 Ply specimens [0$_3$/90$_3$]$_{s}$, [0$_2$/90$_2$/0]$_{s}$ and [90$_3$/0$_3$], [90$_2$/0$_2$/90]S. They are manufactured to varied curvature radius (R=100,150,200mm and $\infty$). They are cured by heating to the appropriate harding temperature(13$0^{\circ}C$) by mean of a heater at the vaccum bag of the autoclave. Test specimens were prepared with dimensions 100mm$\times$140mm. When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistic-screen sensor located a known distance apart. In general, kinetic energy after impact-kinetic energy before impact rised in all specimens. This study observed a fracture mode inside the specimen after a penetration test using a digital camera and it examined a fracture mode and a penetration mode to stack of outer orientation angle and curvature.rvature.

  • PDF

A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining (평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF