• 제목/요약/키워드: Sensor Position

검색결과 2,294건 처리시간 0.028초

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • 제15권2호
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.

영구자석형 동기발전기의 회전자 위치검출 센서의 옵셋 검출에 관한 연구 (A Study on a Rotor Position Sensor Offset Detection Method in a Permanent Magnet Synchronous Generator)

  • 박규성;신성환;이호광;윤영득;이근호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.914-921
    • /
    • 2014
  • In this paper, an algorithm is suggested to detect an offset angle of the absolute rotor position sensor after the initial assembly of a PMSG. Unlike previous studies in a stationary state, this one is not designed to detect an electrical angle but rather the absolute position of the rotor is detected while operating the generator. Also,a position sensor, current sensors and voltage sensor were used to ensure reliability. This technique completes the detection of the sensor offset in two steps. In the first step, a zero-crossing of the EMF is measured using a voltage sensor to detect the electrical angle offset when the alternator is actuated by the engine. In the second step, a high frequency current is injected along the d-axis on-line during the control of the generation, eventually to obtain the inductance using a DFT (Discrete Fourier Transform), and then to ultimately extract the final electrical angle offset through the comparison of the inductance magnitude. The suggested algorithm was validated with PSIM simulation and, furthermore, was tested with actual experiments on a dynamometer.

Implementation of a Mobile Robot Using Landmarks

  • Kim, Sang-Ju;Lee, Jang-Myung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.252-255
    • /
    • 2003
  • In this paper, we suggest the method for a service robot to move safely from an initial position to n goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of n mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of n sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

  • PDF

센서융합에 의한 열차위치 추정방법 (Estimation of Train Position Using Sensor Fusion Technique)

  • 윤희상;박태형;윤용기;황종규;이재호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1205-1211
    • /
    • 2004
  • We propose a train position estimation method for automatic train control system. The accurate train position should be continuously feedback to control system for safe and efficient operation of trains in railway. In this paper, we propose the sensor fusion method integrating the tachometer, the transponder, and the doppler sensor for estimation of train position. The external sensors(transponder, doppler sensor) are used to compensate for the error of internal sensor(tachometer). The Kalman filter is also applied to reduce the measurement error of the sensors. Simulation results are then presented to verify the usefulness of the proposed method.

  • PDF

천장 전등패널 기반 로봇의 주행오차 보정과 제어 (Control and Calibration for Robot Navigation based on Light's Panel Landmark)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.89-95
    • /
    • 2017
  • In this paper, we suggest the method for a mobile robot to move safely from an initial position to a goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of a mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of a sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

Controlling Position of Virtual Reality Contents with Mouth-Wind and Acceleration Sensor

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.57-63
    • /
    • 2019
  • In this paper, we propose a new framework to control VR(Virtual reality) contents in real time using user's mouth-wind and acceleration sensor of mobile device. In VR, user interaction technology is important, but various user interface methods is still lacking. Most of the interaction technologies are hand touch screen touch or motion recognition. We propose a new interface technology that can interact with VR contents in real time using user's mouth-wind method with acceleration sensor. The direction of the mouth-wind is determined using the angle and position between the user and the mobile device, and the control position is adjusted using the acceleration sensor of the mobile device. Noise included in the size of the mouth wind is refined using a simple average filter. In order to demonstrate the superiority of the proposed technology, we show the result of interacting with contents in game and simulation in real time by applying control position and mouth-wind external force to the game.

볼나사 구동 리니어 스테이지의 마그네틱 센서 위치결정 실험 (The Position Decision Experiment of Magnetic Sensor in Ball-screw Driven Linear Stage)

  • 차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.10-14
    • /
    • 2013
  • High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decision. Though ball-screw driven linear stages equipped linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decision if they have not equipped the accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a magnetic sensor as a home switch of ball-screw driven linear stage by using capacitance probe.

PSD 센서를 이용한 모션캡쳐센서의 정밀도 향상을 위한 보정에 관한 연구 (A Study on the Sensor Calibration of Motion Capture System using PSD Sensor to Improve the Accuracy)

  • 최훈일;조용준;유영기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.583-585
    • /
    • 2004
  • In this paper we will deal with a calibration method for low cost motion capture system using psd(position sensitive detection) optical sensor. To measure the incident direction of the light from LED emitted marker, the PSD is used the output current ratio on the electrode of PSD is proportional with the incident position of the light focused by lens. In order to defect the direction of the light, the current output is converted into digital voltage value by opamp circuits peak detector and AD converter with the digital value the incident position is measured. Unfortunately, due to the non-linearly problem of the circuit poor position accuracy is shown. To overcome such problems, we compensated the non-linearly by using least-square fitting method. After compensated the non-linearly in the circuit, the system showed more enhanced position accuracy.

  • PDF

케이블센서를 이용한 2차원 위치측정 시스템 (A Two-Dimensional Position Sensor Using Cable Extension Transducers)

  • 홍대희
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.159-165
    • /
    • 1999
  • Based on the cable-extension transducers, a new technique for two dimensional position measurement is developed in this paper. This new technique includes the use of two such transducers and the planar position is determined through triangulation. This paper also presents uncertainty analysis results for establishing sensor design specifications. An actual prototyped sensor system is built and its accuracy is verified through h\both experiments with coordinate measurement machines and its application to the real-time control of a high load wheeled mobile robot. This new type of position sensor can be easily used in a wide variety of automation applications in industry for two dimensional position measurements with high accuracy over a relatively large range, and it is both cast effective and robust against hostile environments.

  • PDF

간접 칼만 필터 기반의 센서융합을 이용한 실외 주행 이동로봇의 위치 추정 (Localization of Outdoor Wheeled Mobile Robots using Indirect Kalman Filter Based Sensor fusion)

  • 권지욱;박문수;김태은;좌동경;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.800-808
    • /
    • 2008
  • This paper presents a localization algorithm of the outdoor wheeled mobile robot using the sensor fusion method based on indirect Kalman filter(IKF). The wheeled mobile robot considered with in this paper is approximated to the two wheeled mobile robot. The mobile robot has the IMU and encoder sensor for inertia positioning system and GPS. Because the IMU and encoder sensor have bias errors, divergence of the estimated position from the measured data can occur when the mobile robot moves for a long time. Because of many natural and artificial conditions (i.e. atmosphere or GPS body itself), GPS has the maximum error about $10{\sim}20m$ when the mobile robot moves for a short time. Thus, the fusion algorithm of IMU, encoder sensor and GPS is needed. For the sensor fusion algorithm, we use IKF that estimates the errors of the position of the mobile robot. IKF proposed in this paper can be used other autonomous agents (i.e. UAV, UGV) because IKF in this paper use the position errors of the mobile robot. We can show the stability of the proposed sensor fusion method, using the fact that the covariance of error state of the IKF is bounded. To evaluate the performance of proposed algorithm, simulation and experimental results of IKF for the position(x-axis position, y-axis position, and yaw angle) of the outdoor wheeled mobile robot are presented.