• Title/Summary/Keyword: Sensor Node OS

Search Result 72, Processing Time 0.029 seconds

A Sensor Node Operating System Supporting Sensor Abstractions for Ease Development of USN Applications (용이한 USN 응용 개발을 위한 센서추상화 지원 센서노드 운영체제)

  • Eun, Seong-Bae;So, Sun-Sup;Kim, Byeong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.371-379
    • /
    • 2009
  • Conventional sensor node operating systems do not support sensor abstraction for sensor applications. So, application programmers have to take charge of developing the hardware and the device drivers for the applications by themselves. In this paper, we present an as architecture to support sensor abstraction. The as provide not only application programmers with API library to access sensor devices, but also sensor developers with HAL library to access sensor hardware. This can reduce the development burden of application programmers significantly. In this paper, at first, we define the sensor HW interface to ease the attachment of sensors. Second, we describe the sensor access API for application programmers. Third, we define the HAL library for sensor device programmers to use. Finally, we show that the as can support sensor abstraction by illustrating the sample programs.

SenOS: State-driven Operating System Architecture for Dynamic Sensor Node Reconfigurability (SenOS : 동적 센서 노드 재구성을 위한 상태 기반 운영 체제 구조)

  • 홍성수;김태형;한승현;박선희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.349-351
    • /
    • 2003
  • 무선 센서 네트웍은 동작 환경과 구조가 매우 특이하du 개발자들은 센서 네트웍의 노드를 디자인할 때 많은 제약 조건들과 요구 조건들을 고려해야 한다. 먼저 우선 센서 네트웍 상의 각 센서 노드에는 극도로 제한된 하드웨어 자원 조건 하에서도 무선 통신 기능뿐만 아니라 동시에 여러 이벤트를 재빠르게 처리할 수 있는 기능이 포함되어야 한다. 또한 환경과 응용 프로그램의 변화에 잘 대처하기 위해 런타임(run-time)에 각 센서 노드들을 동적으로 재구성할 수 있는 기능이 제공되어야 한다. 이러한 디자인 요구 조건들과 제약 조건들은 얼핏 서로 상반된 것처럼 보이는데, 무선 센서 노드들을 위한 실행 환경을 디자인할 때는 이러한 조건들을 모두 만족시킬 수 있는 운영 체제가 반드시 필요하다. 본 논문에서 우리는 무선 센서 노드들을 위한 매우 효율적이고 효과적인 유한 상태 머신(finite state machine) 기반의 운영체제, SenOS를 제안한다. 또한 새로운 운영 체제인 SenOS가 극도의 제한적인 자원에서도 동시성과 반응성, 재구성성의 요구 조건을 모두 만족시키면서 동작할 수 있다는 것을 보일 것이다.

  • PDF

Design and Verification using Energy Consumption Model of Low Power Sensor Network for Monitoring System for Elderly Living Alone (독거노인 모니터링 시스템을 위한 저전력 센서 네트워크 설계 및 에너지 소모 모델을 이용 검증)

  • Kim, Yong-Joong;Jung, Kyung-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • Wireless sensor networks consist of small, autonomous devices with wireless networking capabilities. In order to further increase the applicability in real world applications, minimizing energy consumption is one of the most critical issues. Therefore, accurate energy model is required for the evaluation of wireless sensor networks. In this paper we analyze the power consumption for wireless sensor networks. To develop the power consumption model, we have measured the power characteristics of commercial Kmote node based on TelosB platforms running TinyOS. Based on our model, the estimated lifetime of a battery powered sensor node can use about 6.9 months for application of human detection using PIR sensors. This result indicates that sensor nodes can be used in a monitoring system for elderly living alone.

  • PDF

Improvement of Class Reuse at Sensor Network System Based on TinyOS Using CATL Model and Facade Pattern (CATL 모델과 Facade 패턴을 이용한 TinyOS 기반 센서네트워크 시스템 클래스 재사용 개선)

  • Baek, Jeong-Ho;Lee, Hong-Ro
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.46-56
    • /
    • 2012
  • Recently, when software architecture is designed, the efficiency of reusability is emphasized. The reusability of the design can raise the quality of GIS software, and reduce the cost of maintenance. Because the object oriented GoF design pattern provides the class hierarchy that can represent repetitively, the importance is emphasized more. This method that designs the GIS software can be applied from various application systems. A multiple distributed sensor network system is composed of the complex structure that each node of the sensor network nodes has different functions and sensor nodes and server are designed by the combination of many classes. Furthermore, this sensor network system may be changed into more complex systems according to a particular purpose of software designer. This paper will design the CATL model by applying Facade pattern that can enhance the efficiency of reuse according to attributes and behaviors in classes in order to implement the complicated structure of the multiple distributed sensor network system based on TinyOS. Therefore, our object oriented GIS design pattern model will be expected to utilize efficiently for design, update, or maintenance, etc. of new systems by packing up attributes and behaviors of classes at complex sensor network systems.

TinyIBAK: Design and Prototype Implementation of An Identity-based Authenticated Key Agreement Scheme for Large Scale Sensor Networks

  • Yang, Lijun;Ding, Chao;Wu, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2769-2792
    • /
    • 2013
  • In this paper, we propose an authenticated key agreement scheme, TinyIBAK, based on the identity-based cryptography and bilinear paring, for large scale sensor networks. We prove the security of our proposal in the random oracle model. According to the formal security validation using AVISPA, the proposed scheme is strongly secure against the passive and active attacks, such as replay, man-in-the middle and node compromise attacks, etc. We implemented our proposal for TinyOS-2.1, analyzed the memory occupation, and evaluated the time and energy performance on the MICAz motes using the Avrora toolkits. Moreover, we deployed our proposal within the TOSSIM simulation framework, and investigated the effect of node density on the performance of our scheme. Experimental results indicate that our proposal consumes an acceptable amount of resources, and is feasible for infrequent key distribution and rekeying in large scale sensor networks. Compared with other ID-based key agreement approaches, TinyIBAK is much more efficient or comparable in performance but provides rekeying. Compared with the traditional key pre-distribution schemes, TinyIBAK achieves significant improvements in terms of security strength, key connectivity, scalability, communication and storage overhead, and enables efficient secure rekeying.

Design and Implementation of Realtime Information Service based on Ubiquitous Sensor Network Using MySQL and Tiny-DB (Tiny-DB와 MySQL을 이용한 유비쿼터스 센서 네트워크 기반의 실시간 정보 서비스 설계 및 구현)

  • Kang, Kyoung-Ok;Kim, Yong-Woo;Kwon, Hoon;Kim, Bu-Rim;Kim, Do-Hyeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • Wireless sensor network forms the self-organization network, and transfers the information among sensor nodes that have computing technology ability and wireless communication ability. The recent sensor network is study for low-power, micro, low cost of node is proceeded. Recently, the research of application services in wireless sensor networks is proceeded. Therefore, in this paper, we design the prototype of the real-time information service that support a user the information of temperature, illumination etc. And, we implement the alarm application service fer the disaster prevention on Internet base on IPv4/IPv6. We develop the module of the extract information using the query processing based on TinyOS, and the module of the server's database using MySQL data base management system and JDBC. Additionally, we develop the client module that receive the real-time sensing data using ODBC in Internet based on IPv4/IPv6.

  • PDF

Static Worst-Case Energy and Lifetime Estimation of Wireless Sensor Networks

  • Liu, Yu;Zhang, Wei;Akkaya, Kemal
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.128-152
    • /
    • 2010
  • With the advance of computer and communication technologies, wireless sensor networks (WSNs) are increasingly used in many aspects of our daily life. However, since the battery lifetime of WSN nodes is restricted, the WSN lifetime is also limited. Therefore, it is crucial to determine this limited lifetime in advance for preventing service interruptions in critical applications. This paper proposes a feasible static analysis approach to estimating the worstcase lifetime of a WSN. Assuming known routes with a given sensor network topology and SMAC as the underlying MAC protocol, we statically estimate the lifetime of each sensor node with a fixed initial energy budget. These estimations are then compared with the results obtained through simulation which run with the same energy budget on each node. Experimental results of our research on TinyOS applications indicate that our approach can safely and accurately estimate worst-case lifetime of the WSN. To the best of our knowledge, our work is the first one to estimate the worst-case lifetime of WSNs through a static analysis method.

RSSI based Indoor Location Tracking System using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 실내위치인식 시스템)

  • Kwon, Joon-Dal;Shin, Jae-Wook;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.364-367
    • /
    • 2007
  • We combined CC2431(Chipcon, Norway), as the platform for the Indoor Location Tracking, which follows Zigbee/IEEE802.15.4 standards in RSSI (Received Signal Strength Indicator) and Base Station Node and then, embodied Indoor Location Tracking System. CC2431 is composed of the Reference Node that transfer its current position at the designated place and the Blind Node. The Blind node receives the current position(X and Y coordinates) of the Reference Node fields which are being contiguous and also, calculates its current position and transfers it to the Base Station Node. The base station node is used for receiving the current position of blind node and passing its data to the PC as a gateway. We can make sure where is the Blind Node not only from the out-of-the-way place of the server side but from the outside in a real-time.

  • PDF

An Implementation of Mobile Gateway Based on Android Smartphone (안드로이드 스마트폰 기반의 모바일 게이트웨이 구현)

  • Lee, Donggeon;Lim, Jae-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.333-338
    • /
    • 2014
  • Zigbee is a wireless communication technology optimized for WSN (Wireless Sensor Network) environment. A WSN gateway is used for node control and data transmission. However, a fixed-type gateway can restrict the flexibility of the WSN environment. A smartphone-mounted high-performance processor and Android OS can be easily used in a mobile WSN gateway. In this paper, we proposed a mobile WSN gateway based on Android smartphones. In the proposed system, a Zigbee sensor module is connected with a smartphone via USB (Universal Serial Bus) port. We also implemented an Android application for the mobile WSN gateway.

A Protocol for Reliable Data Transfer and Congestion Control in Wireless Sensor Networks (무선 센서 네트워크에서 신뢰성 있는 데이터 전송과 혼잡 제어를 위한 프로토콜)

  • Kim, Hyun-Tae;Joo, Young-Hoon;Ra, In-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.230-234
    • /
    • 2007
  • Generally, huge amounts of data traffic are generated by using broadcasting method to deliver sensing data to a sink node reliably so that it makes a severe network saturation problem resulting in unreliable data transfer. In order to handle this problem, a new congestion control protocol is required for supporting reliable data transfer, minimal use of energy and network resources at the same time in wireless sensor networks. In this paper, it proposes a Protocol to guarantee both a reliable transfer in data accuracy and minimum consumption of energy waste by using Hop-by-Hop sequence number and DSbACK(Delayed and Selective ACK Buffer Condition) scheme. In addition, it proves that reliability and energy efficiency are enhanced by the proposed method with the simulation results performed on TinyOS platform which is a component based built-in OS announced by UC Berkely with the performance comparison of other existing methods.